Skip to main content
Log in

Intensified Pb(II) adsorption using functionalized KCC-1 synthesized from rice husk ash in batch and column adsorption studies

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

An attempt to investigate the feasibility of 3-aminopropyltriethoxysilane (3-APTES)-functionalized KCC-1 (NH2/KCC-1) prepared from rice husk ash (RHA) for Pb(II) removal was executed. An effective functionalization of fibrous silica nanospheres (KCC-1) by NH3 was confirmed by FTIR analysis. The optimized condition of Pb(II) adsorption in the batch system was at an initial Pb(II) concentration (X1) of 307 mg/L, adsorbent dosage (X2) of 2.43 g/L, and time (X3) of 114 min, with the Pb(II) removal (Y) of 90.1% (predicted) and 91.2% (actual). NH2/KCC-1 can be regenerated by nitric acid (0.1 M) with insignificant decline of Pb(II) removal percentage (adsorption = 91.2–67.3%, desorption = 77.7–51.9%) during 5 cycles adsorption–desorption study. The examination of column adsorption study at a varying flow rate (1–3 mL/min) and bed height (10–20 cm) showed a good performance at a lower flow rate and higher bed height. Both Adam–Bohalt model and Thomas model displayed a good correlation with experimental data. However, Thomas model was more suitable due to the high correlation coefficient, R2 = 0.91–0.99. This study revealed the intensified Pb(II) adsorption using NH2/KCC-1 synthesized from RHA in batch and column adsorption studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The financial assistance provided by Universiti Malaysia Pahang through International Publication Grant (RDU203303) and Postgraduate Research Grant (PGRS210316) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Setiabudi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 53 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, R., Mohd Zaki, R.S.R., Setiabudi, H.D. et al. Intensified Pb(II) adsorption using functionalized KCC-1 synthesized from rice husk ash in batch and column adsorption studies. Appl Nanosci 13, 4021–4032 (2023). https://doi.org/10.1007/s13204-022-02689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02689-y

Keywords

Navigation