Skip to main content
Log in

Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Novel nanocomposite film materials were fabricated by thiol-epoxy click reaction in the presence of  ≤ 1.0 wt% graphene oxide (GO). SEM, X-ray diffraction, and FTIR techniques were used for comprehensive characterization of the nanocomposites' morphology and structure. The grafting of GO into the epoxy vitrimer network was confirmed. The effect of loadings of GO on the mechanical properties of nanocomposite films was examined. The tensile strength and Young's modulus of nanocomposite material increase by 69 and 46%, respectively, with the addition of 0.5 wt% GO. The flexibility of the nanocomposite films improved more than fourfold by adding 1.0 wt% GO compared to the epoxy vitrimer matrix. The gas-microphone photoacoustic approach was applied for the thermal conductivity evaluation of the samples. The nanocomposites showed a maximum increase in thermal conductivity almost two times with the addition of 1.0 wt% GO as compared to the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboutalebi SH, Gudarzi MM, Zheng QB, Kim J-K (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Func Mater 21:2978–2988

    Article  CAS  Google Scholar 

  • Alabiso W, Schlögl S (2020) The impact of vitrimers on the industry of the future: chemistry, properties and sustainable forward-looking applications. Polymers 12(8):1660

    Article  CAS  Google Scholar 

  • Besharat F, Manteghian M, Gallone G, Lazzeri A (2019) Electric field induced alignment of graphene oxide nanoplatelets in polyethersulfone matrix. Nanotechnology 31(15):155701

    Article  Google Scholar 

  • Bortz DR, Heras EG, Martin-Gullon I (2012) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45:238–245

    Article  CAS  Google Scholar 

  • Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromol 7:1700–1706

    Article  CAS  Google Scholar 

  • Chen J, Huang H, Fan J, Wang Y, Yu J, Zhu J, Hu Z (2019a) Vitrimer chemistry assisted the fabrication of aligned, healable, and recyclable graphene/epoxy composites. Front Chem 7:632

    Article  CAS  Google Scholar 

  • Chen G-K, Wu K, Zhang Q, Shi Y-C, Lu M-G (2019b) Dual-responsive shape memory and thermally reconfigurable reduced graphene oxide-vitrimer composites. Macromol Res 27:526–533

    Article  Google Scholar 

  • Cheng J, Li J, Zhang JY (2009) Curing behavior and thermal properties of trifunctional epoxy resin cured by 4,4’-diaminodiphenyl sulfone. eXPRESS Polym Lett 3(8):501–509

    Article  CAS  Google Scholar 

  • Denissen W, Winne JM, Du Prez FE (2015) Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 7(1):30–38

    Article  Google Scholar 

  • Djemour A, Sanctuary R, Baller J (2015) Mobility restrictions and glass transition behavior of an epoxy resin under confinement. Soft Matter 11:2683–2690

    Article  CAS  Google Scholar 

  • Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7(23):10294–10329

    Article  CAS  Google Scholar 

  • Dubyk K, Chepela L, Lishchuk P, Belarouci A, Lacroix D, Isaiev M (2019) Features of photothermal transformation in porous silicon based multilayered structures. Appl Phys Lett 115:021902

    Article  Google Scholar 

  • Gablier A, Saed MO, Terentjev EM (2020) Rates of transesterification in epoxy–thiol vitrimers. Soft Matter 16:5195

    Article  CAS  Google Scholar 

  • Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan CJ (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys 116(5):053518

    Article  Google Scholar 

  • Gogoi P, Boruah R, Dolui SK (2015) Jatropha curcas oil based alkyd/epoxy/graphene oxide (GO) bionanocomposites: Effect of GO on curing, mechanical and thermal properties. Prog Org Coat 84:128–135

    Article  CAS  Google Scholar 

  • Hayashi M, Katayama A (2020) Colorless, highly transparent epoxy-based vitrimers prepared by thiol-epoxy click reaction and evaluation of the shape memory properties. ACS Appl Polym Mater 2(6):2452–2457

    Article  CAS  Google Scholar 

  • Hou D, Yang Q, Jin Z, Wang P, Wang M, Wang X, Zhang Y (2021) Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation. Appl Surf Sci 568:150896

    Article  CAS  Google Scholar 

  • Jin F-L, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  • Krishnakumar B, Prasanna Sanka RVS, Binder WH, Park C, Jung J, Parthasarthy V, Rana S, Yun GJ (2020a) Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Compos B Eng 184:107647

    Article  CAS  Google Scholar 

  • Krishnakumar B, Singh M, Parthasarthy V, Park C, Sahoo NG, Yun GJ, Rana S (2020b) Disulfide exchange assisted self-healing epoxy/PDMS/graphene oxide nanocomposites. Nanoscale Adv 2:2726–2730

    Article  CAS  Google Scholar 

  • Liang X, Dai F (2020) Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Appl Mater Interfaces 12(2):3051–3058

    Article  CAS  Google Scholar 

  • Lishchuk P, Isaiev M, Osminkina L, Burbelo R, Nychyporuk T, Timoshenko V (2019) Photoacoustic characterization of nanowire arrays formed by metal-assisted chemical etching of crystalline silicon substrates with different doping level. Phys E 107:131–136

    Article  CAS  Google Scholar 

  • Mohan P (2013) A critical review: The modification, properties, and applications of epoxy resins. Polym-Plast Technol Eng 52:107–125

    Article  CAS  Google Scholar 

  • Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968

    Article  CAS  Google Scholar 

  • Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  • Park W, Hu J, Jauregui LA, Ruan X, Chen YP (2014) Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl Phys Lett 104:113101

    Article  Google Scholar 

  • Poutrela Q-A, Baghdadia Y, Souvigneta A, Gresi M (2021) Graphene functionalizations: conserving vitrimer properties towards nanoparticles recovery using mild dissolution. Compos Sci Technol 216:109072

    Article  Google Scholar 

  • Rafiee M, Nitzsche F, Laliberte J, Hind S, Robitaille F, Labrosse MR (2019) Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced graphene oxide. Compos Part B Eng 164:1–9

    Article  CAS  Google Scholar 

  • Rao CNR, Venkataraghavan R, Kasturi TR (1964) Contribution to the infrared spectra of organosulphur compounds. Can J Chem 42(1):36–42

    Article  CAS  Google Scholar 

  • Siraimeettan K, Arumugam H, Ayyavu C, Ponnaiah G, Muthukaruppan A (2020) Mechanical, thermal and dielectric studies of reduced graphene oxide reinforced cardanol based polybenzoxazine/epoxy nanocomposites. Compos Interfaces 28(5):461–476

    Article  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristics group frequencies tables and charts, 3rd edn. Wiley, England

    Google Scholar 

  • Spegazzini N, Ruisánchez I, Larrechi MS (2009) MCR-ALS for sequential estimation of FTIR-ATR spectra to resolve a curing process using global phase angle convergence criterion. Anal Chim Acta 642:155–162

    Article  CAS  Google Scholar 

  • Vashchuk A, Kobzar Y (2022) Chemical welding of polymer networks. Mater Today Chem 24:100803

    Article  CAS  Google Scholar 

  • Wilk J, Smusz R, Filip R, Chmiel G, Bednarczyk T (2020) Experimental investigations on graphene oxide/rubber composite thermal conductivity. Sci Rep 10:15533

    Article  CAS  Google Scholar 

  • Wu Z, Chen J, Li Q, Xia D-H, Deng Y, Zhang Y, Qin Z (2021) Preparation and thermal conductivity of epoxy resin/graphene-Fe3O4 composites. Materials 14:2013

    Article  CAS  Google Scholar 

  • Yang Z, Wang Q, Wang T (2016) Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl Mater Interfaces 8:21691–21699

    Article  CAS  Google Scholar 

  • Yang Y, Xu Y, Ji Y, Wei Y (2021) Functional epoxy vitrimers and composites. Prog Mater Sci 120:100710

    Article  CAS  Google Scholar 

  • Yoonessi M, Toghiani H, Kingery WL, Pittman CU (2004) Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules 37:2511–2518

    Article  CAS  Google Scholar 

  • Yue L, Guo H, Kennedy A, Patel A, Gong X, Ju T, Gray T, Manas-Zloczower I (2020) Vitrimerization: converting thermoset polymers into vitrimers. ACS Macro Lett 9(6):836–842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Academy of Sciences of Ukraine under program no. 6541230 for Young Scientist Laboratories (agreement no. 11/01-2021(2)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vashchuk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashchuk, A., Motrunich, S., Lishchuk, P. et al. Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide. Appl Nanosci 13, 4675–4683 (2023). https://doi.org/10.1007/s13204-022-02587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02587-3

Keywords

Navigation