Skip to main content
Log in

Cattaneo–Christov-based study of AL2O3–Cu/EG Casson hybrid nanofluid flow past a lubricated surface with cross diffusion and thermal radiation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Casson fluid possesses yield stress and has great importance in biomechanics and polymer processing industries. In the present study, a mathematical model is presented to Cattaneo–Christov-based study on the heat and mass transfer, as well as entropy generation analysis of a thermal system in the presence of the Casson hybrid nanofluid over lubricated surfaces at a stagnation point. A power-law (shear-thinning) fluid is utilized for lubrication. Implementing the continuity of velocity and shear stress of Casson and power-law fluids creates interfacial conditions. We also incorporated thermal radiation effects and a uniform transverse magnetic field in the present study. The similarity techniques are used to reduce the governing nonlinear partial differential equation to a set of the ordinary differential equation. For the numerical solution of the considered problem, we have used MATLAB-based Bvp4c method. The results are presented for hybrid alumina-copper/ethylene glycol (Al2O3–Cu/EG) nanofluid. The computed results are original, and it has been noticed that the present results have excellent agreement with the results of the previous extending literature. It has been observed that the Nusselt number or heat transfer rate of hybrid nanofluid flow is better as compared to nanofluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

β:

The Casson parameter

βC :

Volumetric expansion’s coefficients due to concentration

βT :

Volumetric expansion’s coefficients due to temperature

λ:

Thermal relaxation time period

b :

Temperature/concentration length dimension

T m :

The mean fluid temperature s

K T :

The thermal diffusion ratio

K r1 :

The chemical reaction parameter

λ1 :

The thermal buoyancy parameter and

λ2 :

The concentration buoyancy parameter

Ns :

Entropy production

\(\hat{U}_{e}\) :

Non-uniform velocity fluids temperatures

\(\hat{C}\) :

Fluid concentration

\(\hat{T}_{b}\) :

The surface temperature

\(\hat{C}_{b}\) :

The surface concentration

k s1 :

Thermals conductivity of first particle

k s2 :

Thermals conductivity of second particle

k f :

Thermals conductivity of base fluids

k nf :

Thermals conductivity of the nanofluid

k h nf :

Thermals conductivity of the hybrid nanofluids

S :

Depends on the shape factor through the H–C models

ρs1 :

Density of the first nanoparticles

ρs1 :

Density of the second nanoparticles

(c p)hnf :

Specifics heats for the hybrid nanofluid

P y :

Fluid’s yield stress

πc :

Critical product

D m :

Species diffusivity

σ*:

Stefan Boltzmann constant

k*:

Consistency coefficients

γ:

Thermal relaxation time period

M:

The magnetic parameter

μL :

The lubricant viscosity

′Ω:

The dimensionless temperature gradient

S c :

Schmidt number

B r :

The Brinkman number

S r :

Soret number

K r :

The chemical reaction parameter

R e :

The permeability Reynolds numbers

P r :

The Prandtl number

R :

Thermal radiation parameter

μhnf :

The dynamic viscosity of the hybrid nanofluid

ρhnf :

The density of the hybrid nanofluids

σhnf :

Electrical conductivity of hybrid nanofluid

υhnf :

The kinametic viscosity of hybrid nanofluid

HNF:

Hybrid nanofluid

SP:

Stagnation point

MC:

Mixed convection

SFC:

Skin friction coefficients

c p :

Specifics heats at constant pressure

η:

Scaled boundary layer coordinate

θ:

Self-similar temperature

μ:

Dynamic viscosity

υ:

Kinematic viscosity

ρ:

Density

σ:

Electric conductivity

ϕ 1 :

First nanoparticle volume fraction

ϕ 2 :

Second nanoparticle volume fraction

nf:

Nanofluid

hnf:

Hybrid nanofluid

s1:

First nanoparticles

s2:

Second nanoparticles

References

  • Abid N, Ramzan M, Chung JD, Kadry S, Chu YM (2020) Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Sci Rep 10(1):1–14

    Article  CAS  Google Scholar 

  • Abrar MN, Haq RU, Awais M, Rashid I (2017) Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field. Nucl Eng Technol 49(8):1680–1688

    Article  CAS  Google Scholar 

  • Abu-Libdeh N, Redouane F, Aissa A, Mebarek-Oudina F, Almuhtady A, Jamshed W, Al-Kouz W (2021) Hydrothermal and entropy investigation of Ag/MgO/H2O hybrid nanofluid natural convection in a novel shape of porous cavity. Appl Sci 11(4):1722

    Article  CAS  Google Scholar 

  • Ahmad S, Nadeem S (2020) Cattaneo–Christov-based study of SWCNT–MWCNT/EG Casson hybrid nanofluid flow past a lubricated surface with entropy generation. Appl Nanosci 10(12):5449–5458

    Article  CAS  Google Scholar 

  • Ahmad S, Nadeem S, Ullah N (2020) Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl Nanosci 10(12):5107–5119

    Article  CAS  Google Scholar 

  • Aksoy Y (2016) Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux. Int J Therm Sci 107:1–12

    Article  Google Scholar 

  • Alfvén H (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406

    Article  Google Scholar 

  • Aly EH, Pop I (2019) MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. Int J Numer Methods Heat Fluid Flow 29:3012–3038

    Article  Google Scholar 

  • Aman S, Zokri SM, Ismail Z, Salleh MZ, Khan I (2018) Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid. J Adv Res Fluid Mech Thermal Sci 44(1):131–139

    Google Scholar 

  • Andersson HI, Rousselet M (2006) Slip flow over a lubricated rotating disk. Int J Heat Fluid Flow 27(2):329–335

    Article  Google Scholar 

  • Ashorynejad HR, Shahriari A (2018) MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys 9:440–455

    Article  Google Scholar 

  • Bejan A (2013) Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC Press

    Book  Google Scholar 

  • Chamkha AJ, Dogonchi AS, Ganji DD (2018) Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci 8(12):2396

    Article  CAS  Google Scholar 

  • Dogonchi AS, Ganji DD (2015) Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA. Case Stud Therm Eng 6:40–51

    Article  Google Scholar 

  • Garia R, Rawat SK, Kumar M, Yaseen M (2021) Hybrid nanofluid flow over two different geometries with Cattaneo–Christov heat flux model and heat generation: a model with correlation coefficient and probable error. Chin J Phys 74:421–439

    Article  CAS  Google Scholar 

  • Gul H, Ramzan M, Chung JD, Chu YM, Kadry S (2021) Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo-Christov heat flux and autocatalytic chemical reaction. Sci Rep 11(1):1–14

    Article  CAS  Google Scholar 

  • Gumber P, Yaseen M, Rawat SK, Kumar M (2021) Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differ Equ Appl Math 100240

  • Hayat T, Khan SA, Khan MI, Momani S, Alsaedi A (2020) Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Comput Methods Programs Biomed 187:105247

    Article  CAS  Google Scholar 

  • Hayat T, Ullah I, Muhammad T, Alsaedi A (2016) Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J Mol Liq 220:1004–1012

    Article  CAS  Google Scholar 

  • Hiemenz K (1911) Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J 326:321–324

    Google Scholar 

  • Homann F (1936) Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. ZAMM J Appl Math Mech 16(3):153–164

    Article  Google Scholar 

  • Hussain S, Ahmed SE, Akbar T (2017) Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transf 114:1054–1066

    Article  CAS  Google Scholar 

  • Hussien AA, Al-Kouz W, Yusop NM, Abdullah MZ, Janvekar AA (2019) A brief survey of preparation and heat transfer enhancement of hybrid nanofluids. Strojniski Vestnik/j Mech Eng 65:441–453

    Article  Google Scholar 

  • Imtiaz M, Hayat T, Hussain M, Shehzad SA, Chen GQ, Ahmad B (2014) Mixed convection flow of nanofluid with Newtonian heating. Eur Phys J plus 129(5):1–11

    Article  CAS  Google Scholar 

  • Jamshed W, Aziz A (2018) Cattaneo-Christov based study of TiO2 TiO2–CuO/EG Casson hybrid nanofluid flow over a stretching surface with entropy generation. Appl Nanosci 8(4):685–698

    Article  CAS  Google Scholar 

  • Krishna MV, Ahammad NA, Chamkha AJ (2021) Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Stud Thermal Eng 27:101229

    Article  Google Scholar 

  • Mabood F, Shafiq A, Khan WA, Badruddin IA (2021) MHD and nonlinear thermal radiation effects on hybrid nanofluid past a wedge with heat source and entropy generation. Int J Numer Methods Heat Fluid Flow

  • Mahmood A, Jamshed W, Aziz A (2018) Entropy and heat transfer analysis using Cattaneo–Christov heat flux model for a boundary layer flow of Casson nanofluid. Results Phys 10:640–649

    Article  Google Scholar 

  • Mahmood K, Sadiq MN, Sajid M, Ali N (2019) Heat transfer in stagnation-point flow of a Jeffrey fluid past a lubricated surface. J Braz Soc Mech Sci Eng 41(2):1–9

    Article  Google Scholar 

  • Mukhopadhyay S, Mandal IC (2015) Magnetohydrodynamic (MHD) mixed convection slip flow and heat transfer over a vertical porous plate. Eng Sci Technol 18(1):98–105

    Google Scholar 

  • Nadeem S, Ahmad S, Muhammad N (2018) Computational study of Falkner-Skan problem for a static and moving wedge. Sens Actuat B Chem 263:69–76

    Article  CAS  Google Scholar 

  • Nasrin R, Alim MA (2014) Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles. J Appl Fluid Mech 7(3)

  • Othman NA, Yacob NA, Bachok N, Ishak A, Pop I (2017) Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Appl Therm Eng 115:1412–1417

    Article  Google Scholar 

  • Pushpalatha K, Reddy JR, Sugunamma V, Sandeep N (2017) Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation. Open Eng 7(1):69–76

    Article  CAS  Google Scholar 

  • Qing J, Bhatti MM, Abbas MA, Rashidi MM, Ali MES (2016) Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4):123

    Article  CAS  Google Scholar 

  • Qureshi M, Bilal S, Malik MY, Raza Q, Sherif ESM, Li YM (2021) Dispersion of metallic/ceramic matrix nanocomposite material through porous surfaces in magnetized hybrid nanofluids flow with shape and size effects. Sci Rep 11(1):1–19

    Article  CAS  Google Scholar 

  • Rashidi MM, Bég AO, Freidooni MN, Hosseini A, Gorla RSR (2012) Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder. Theoret Appl Mech 39(4):365–390

    Article  Google Scholar 

  • Rashidi MM, Parsa AB, Beg OA, Shamekhi L, Sadri SM, Bég TA (2014) Parametric analysis of entropy generation in magneto-hemodynamic flow in a semi-porous channel with OHAM and DTM. Appl Bionics Biomech 11(12):47–60

    Article  Google Scholar 

  • Rawat SK, Kumar M (2020) Cattaneo-Christov heat flux model in flow of copper water nanofluid through a stretching/shrinking sheet on stagnation point in presence of heat generation/absorption and activation energy. Int J Appl Comput Math 6(4):1–26

    Article  Google Scholar 

  • Rawat SK, Negi S, Upreti H, Kumar M (2021) A non-Fourier’s and non-fick’s approach to study mhd mixed convective copper water nanofluid flow over flat plate subjected to convective heating and zero wall mass flux condition. Int J Appl Comput Math 7(6):1–27

    Article  Google Scholar 

  • Sajid M, Javed T, Abbas Z, Ali N (2013) Stagnation-point flow of a viscoelastic fluid over a lubricated surface. Int J Nonlinear Sci Numer Simul 14(5):285–290

    Article  Google Scholar 

  • Sandeep N, Sulochana C, Animasaun IL (2016) Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction. Int J Eng Res Afr 20:93–111

    Article  Google Scholar 

  • Shafiq A, Jabeen S, Hayat T, Alsaedi A (2017) Cattaneo-Christov heat flux model for squeezed flow of third grade fluid. Surf Rev Lett 24(07):1750098

    Article  CAS  Google Scholar 

  • Shahsavar A, Sardari PT, Toghraie D (2019) Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow 29:915–934

    Article  Google Scholar 

  • Tlili I (2021) Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid. Math Sci 1–9

  • Tlili I, Samrat SP, Sandeep N (2021) A computational frame work on magnetohydrodynamic dissipative flow over a stretched region with cross diffusion: simultaneous solutions. Alex Eng J 60(3):3143–3152

    Article  Google Scholar 

  • Usman M, Hamid M, Zubair T, Haq RU, Wang W (2018) Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf 126:1347–1356

    Article  CAS  Google Scholar 

  • Veera Krishna M (2020) Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface. Heat Transfer 49(3):1374–1385

    Article  Google Scholar 

  • Wang CY (2003) Stagnation flows with slip: exact solutions of the Navier-Stokes equations. Z Angew Math Phys 1(54):184–189

    Article  Google Scholar 

  • Yaseen M, Kumar M, Rawat SK (2021) Assisting and opposing flow of a MHD hybrid nanofluid flow past a permeable moving surface with heat source/sink and thermal radiation. Partial Differ Equ Appl Math 4:100168

    Article  Google Scholar 

  • Yaseen M, Rawat SK, Kumar M (2022) Hybrid nanofluid (MoS2–SiO2/water) flow with viscous dissipation and Ohmic heating on an irregular variably thick convex/concave-shaped sheet in a porous medium. Heat Transfer 51(1):789–817

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rauf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, A., Faisal & Mushtaq, T. Cattaneo–Christov-based study of AL2O3–Cu/EG Casson hybrid nanofluid flow past a lubricated surface with cross diffusion and thermal radiation. Appl Nanosci 12, 2059–2076 (2022). https://doi.org/10.1007/s13204-022-02495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02495-6

Keywords

Navigation