Skip to main content
Log in

A facile process for fabricating long-period fiber grating sensors using a refracted laser beam and laser-assisted wet etching

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This study proposes a facile method for fabricating long-period fiber gratings. Optical designs were created so that laser light could be written into the grating structure on the fiber cladding without the need to remove the protective polyimide (PI) buffer layer. A laser-assisted wet chemical etching process was used to fabricate a long-period fiber grating and to identify the etching rate and depth of the grating. Refraction occurred when the laser light first passed through the PI layer, and the refracted beam ablated the grating structure between the fiber cladding and the PI layer. The PI coating facilitated ablation by the refracted laser beam of regions in the fiber without the need to remove the buffer layer. Wet etching resulted in the formation of periodic crown structures on the fiber grating due to different etching speeds of the laser-ablated regions on the grating. The fiber sensor had a diameter of 55 μm and a period of 660 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bai Z, Wang L, Zhang X, Ran C, Liao Q, Qin L (2020) A novel fiber-grafting-sensing testing method for temperature deformation of piezoelectric composites. Polym Testing 81:106162

    Article  CAS  Google Scholar 

  • Berghmans F, Geernaert T, Baghdasaryan T, Thienpont H (2014) Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres. Laser Photon Rev 8(1):27–52

    Article  CAS  Google Scholar 

  • Bushunov AA, Tarabrin MK, Lazarev VA (2021) Review of surface modification technologies for mid-infrared antireflection microstructures fabrication. Laser Photon Rev 15(5):2000202

    Article  CAS  Google Scholar 

  • Cao X, Tian D, Liu Y, Zhang L, Wang TJISJ (2018) Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser. IEEE Sensors J 18(18):7481–7485

    Article  CAS  Google Scholar 

  • Corbari C, Champion A, Gecevičius M, Beresna M, Bellouard Y, Kazansky PG (2013) Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass. J Optics Express 21(4):3946–3958

    Article  CAS  Google Scholar 

  • Dong X, Xie Z, Song Y, Yin K, Luo Z, Wang CJO et al (2017) Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses. Opt Laser Technol 97:248–253

    Article  CAS  Google Scholar 

  • Esposito F, Srivastava A, Sansone L, Giordano M, Campopiano S, Iadicicco A (2021) Label-free biosensors based on long period fiber gratings: a review. IEEE Sens J 21(11):12692–12705. https://doi.org/10.1109/JSEN.2020.3025488

    Article  CAS  Google Scholar 

  • Gao R, Jiang Y, Jiang L (2014) Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor. J Optics Express 22(13):15697–15709

    Article  CAS  Google Scholar 

  • Hnatovsky C, Taylor RS, Simova E, Bhardwaj VR, Rayner DM, Corkum PB (2005) Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt Lett 30(14):1867–1869. https://doi.org/10.1364/OL.30.001867

    Article  CAS  Google Scholar 

  • Hosseini Largani SR, Wen H-Y, Chen J-L, Chiang C-C (2019) Photoresist-free, laser-assisted chemical etching process for long-period fiber grating. Opt Express 27(20):28606–28617. https://doi.org/10.1364/OE.27.028606

    Article  Google Scholar 

  • Jayaprakash R, Whittaker CE, Georgiou K, Game OS, McGhee KE, Coles DM et al (2020) Two-dimensional organic-exciton polariton lattice fabricated using laser patterning. ACS Photonics 7(8):2273–2281

    Article  CAS  Google Scholar 

  • Jin X, Sun C, Duan S, Liu W, Li G, Zhang S et al (2019) High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating. IEEE Photonics J 11(1):1–8

    Article  Google Scholar 

  • Kawaguchi Y, Niino H, Sato T, Narazaki A, Kurosaki R (2007) A deep micro-trench on silica glass fabricated by laserinduced backside wet etching (LIBWE). J Phys: Conf Ser 59:380–383. https://doi.org/10.1088/1742-6596/59/1/080

    Article  CAS  Google Scholar 

  • Lee T, Jang D, Ahn D, Kim D (2010) Effect of liquid environment on laser-induced backside wet etching of fused silica. J Appl Phys 107(3):033112

    Article  Google Scholar 

  • Lorenz P, Ehrhardt M, Zimmer K (2012) Laser-induced front side and back side etching of fused silica with KrF and XeF excimer lasers using metallic absorber layers: a comparison. Appl Surf Sci 258(24):9742–9746

    Article  CAS  Google Scholar 

  • Luong KP, Tanabe-Yamagishi R, Yamada N, Ito Y (2020) Laser-assisted wet etching of silicon back surfaces using 1552 nm femtosecond laser. Int J Electr Mach 25:7

    Article  Google Scholar 

  • Marcinkevičius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H et al (2001a) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26(5):277–279

    Article  Google Scholar 

  • Marcinkevičius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H et al (2001b) Femtosecond laser-assisted three-dimensional microfabrication in silica. J Optics Letters 26(5):277–279

    Article  Google Scholar 

  • Nguyen PT, Jang J, Kim S-M, Hwang T, Yeo J, Grigoropoulos CP et al (2021) Nanosecond laser-induced reshaping of periodic silicon nanostructures. Curr Appl Phys 22:43–49

    Article  CAS  Google Scholar 

  • Ross CA, MacLachlan DG, Choudhury D, Thomson RR (2018) Optimisation of ultrafast laser assisted etching in fused silica. Opt Express 26(19):24343–24356

    Article  CAS  Google Scholar 

  • Song Q, Chai L, Li Y, Pang D, Hu M (2020) Direct femtosecond laser ablation of large-area TaSe2, SnS2, and TiS2 thick films by a back ablation procedure. Appl Opt 59(25):7606–7612

    Article  CAS  Google Scholar 

  • Tabassum R, Kant R (2020) Laser-ablated core-shell nanostructures of MWCNT@ Ta2O5 as plasmonic framework for implementation of highly sensitive refractive index sensor. Sens Actuators A Phys 309:112028

    Article  CAS  Google Scholar 

  • Tanabe T, Okamoto T, Kannari F (2003) Spectrum-holographic formation of fine etching patterns on a silicon surface with pulse-shaped femtosecond laser pulses. Jpn J Appl Phys 42(9):5594–5597. https://doi.org/10.1143/jjap.42.5594

    Article  CAS  Google Scholar 

  • Turpin A, Loiko YV, Kalkandjiev TK, Mompart J (2016) Conical refraction: fundamentals and applications. Laser Photon Rev 10(5):750–771

    Article  Google Scholar 

  • Wang T-T, Bargiel S, Lardet-Vieudrin F, Wang Y-F, Wang Y-S, Laude V (2020) Collective resonances of a chain of coupled phononic microresonators. Phys Rev Appl 13(1):014022

    Article  CAS  Google Scholar 

  • Xi T, Wang D, Ma C, Yuan L (2021) Sensing characteristics of collapsed long period fiber gratings in tri-hole fiber. J Lightwave Technol 39(18):6008–6012

    Article  CAS  Google Scholar 

  • Yonemura M, Kato S, Hasegawa K, Takahashi H (2016a) Formation of through holes in glass substrates by laser-assisted etching. J Laser Micro Nanoeng 11(2):143

    Article  CAS  Google Scholar 

  • Yonemura M, Kato S, Hasegawa K, Takahashi H (2016b) Formation of through holes in glass substrates by laser-assisted etching. J Laser Micro Nanoeng 11(2):143

    Article  CAS  Google Scholar 

  • Zhang J, Tang X, Dong J, Wei T, Xiao H (2008) Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical. J Optics Express 16(11):8317–8323

    Article  CAS  Google Scholar 

  • Zhang MY, Liu LZ, Hui K, Hui K (2017) Effect of alkali treatment on the mechanical property of polyimide film. Key Eng Mater Trans Tech Publ 744:364–369

    Article  Google Scholar 

  • Zhou K, Lai Y, Chen X, Sugden K, Zhang L, Bennion I (2007) A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing. J Optics Express 15(24):15848–15853

    Article  Google Scholar 

  • Zimmer K, Böhme R, Rauschenbach B (2005) Adsorbed layer etching of fused silica by excimer laser with nanometer depth precision. Microelectron Eng 78:324–330

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Ministry of Science and Technology of Taiwan and by grant MOST 110-2221-E-992-054-MY3 and MOST 110-2222-E-309-001-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chin Chiang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, HY., Hsu, HC., Weng, JJ. et al. A facile process for fabricating long-period fiber grating sensors using a refracted laser beam and laser-assisted wet etching. Appl Nanosci 12, 2265–2276 (2022). https://doi.org/10.1007/s13204-022-02476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02476-9

Keywords

Navigation