Skip to main content
Log in

Electrochemical detection of cortisol on graphene quantum dots modified electrodes using a rationally truncated high affinity aptamer

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Stress nowadays is one of the major causes of various pathologies in humans. Monitoring of stress associated biomarker levels in biological fluids on demand can help in effective management of stress. Since cortisol has been recognised as a potential biomarker for stress, its detection can help in an appropriate therapeutic intervention or stress management. Various types of biosensors such as immunosensors, aptasensors, molecularly imprinted polymers and enzyme-linked based biosensors have been reported till now for the cortisol sensing. Out of all, aptasensors have shown various advantages over other sensors such as specificity, high room temperature stability, reproducibility, etc. Among various reported aptasensors, full-length aptamer (> 60-mer) has been used. However, only a portion of aptamer interact with its target, therefore, establishing its structure–activity relationship is vital for a biosensor to achieve an optimized performance. In the current work, we have rationally truncated already existing 61-mer aptamer sequence into its smaller variant with only 14 bases. Parent and truncated aptamers were immobilized on the graphene quantum dots modified electrodes for electrochemical biosensing of cortisol. Detection limits and cross-reactivities of both the aptamers were compared and it was found that truncated aptamer showed better results in terms of specificity. Though the limit of detection is same for both parent and truncated aptamers, i.e. 0.1 pg/ml but cross-reactivity from various structural analogues in sensing is reduced drastically in case of truncated variant. In brief, we are reporting a label-free electrochemical aptasensor utilizing the truncated aptamer (14-mer) that has remarkable limit of detection (0.1 pg/ml), high level of selectivity and reproducibility for the direct analysis of the cortisol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aberle J, Zur Wiesch CS, Flitsch J, Veigel J, Schön G, Jung R, Reining F, Lautenbach A, Rotermund R, Riedel N (2018) Specificity of late-night salivary cortisol measured by automated electrochemiluminescence immunoassay for Cushing’s disease in an obese population. J Endocrinol Investig 41(11):1325–1331

    Article  CAS  Google Scholar 

  • Abraham GE, Buster JE, Teller RC (1972) Radioimmunoassay of plasma cortisol. Anal Lett 5(11):757–765

    Article  CAS  Google Scholar 

  • Baluta S, Lesiak A, Cabaj J (2018) Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection. Electroanalysis 30(8):1781–1790

    Article  Google Scholar 

  • Bhatnagar D, Kaur I, Kumar A (2017) Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. Int J Biol Macromol 95:505–510

    Article  CAS  Google Scholar 

  • Dalirirad S, Han D, Steckl AJ (2020) Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega 5(51):32890–32898

    Article  CAS  Google Scholar 

  • Das R, Dhiman A, Mishra SK, Haldar S, Sharma N, Bansal A, Ahmad Y, Kumar A, Tyagi JS, Sharma TK (2019) Structural switching electrochemical DNA aptasensor for the rapid diagnosis of tuberculous meningitis. Int J Nanomed 14:2103

    Article  CAS  Google Scholar 

  • De Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  Google Scholar 

  • Dhiman A, Anand A, Malhotra A, Khan E, Santra V, Kumar A, Sharma TK (2018) Rational truncation of aptamer for cross-species application to detect krait envenomation. Sci Rep 8(1):1–8

    CAS  Google Scholar 

  • Dhull N, Kaur G, Gupta V, Tomar M (2019) Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sens Actuators B Chem 293:281–288

    Article  CAS  Google Scholar 

  • Ding Y, Cheng H, Zhou C, Fan Y, Zhu J, Shao H, Qu L (2012) Functional microspheres of graphene quantum dots. Nanotechnology 23(25):255605

    Article  Google Scholar 

  • Dobson H, Smith R (2000) What is stress, and how does it affect reproduction? Anim Reprod Sci 60:743–752

    Article  Google Scholar 

  • Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743

    Article  CAS  Google Scholar 

  • Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Article  CAS  Google Scholar 

  • Elio F, Antonelli G, Benetazzo A, Prearo M, Gatti R (2009) Human saliva cortisone and cortisol simultaneous analysis using reverse phase HPLC technique. Clin Chim Acta 405(1–2):60–65

    Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  • Fernandez RE, Umasankar Y, Manickam P, Nickel JC, Iwasaki LR, Kawamoto BK, Todoki KC, Scott JM, Bhansali S (2017) Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci Rep 7(1):1–9

    Article  Google Scholar 

  • Ferrari A, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64(7):075414

    Article  Google Scholar 

  • Gn CJ, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M (2015) Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal Chem 87(2):1075–1082

    Article  Google Scholar 

  • Gu J, Zhang X, Pang A, Yang J (2016) Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 27(16):165704

    Article  Google Scholar 

  • Hellhammer DH, Wüst S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34(2):163–171

    Article  CAS  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    Article  CAS  Google Scholar 

  • Ke CC, Yang YC, Tseng WL (2016) Synthesis of blue-, green-, yellow-, and red-emitting graphene-quantum-dot-based nanomaterials with excitation-independent emission. Part Part Syst Charact 33(3):132–139

    Article  CAS  Google Scholar 

  • Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725

    Article  CAS  Google Scholar 

  • Lewis J, Elder P (1985) An enzyme-linked immunosorbent assay (ELISA) for plasma cortisol. J Steroid Biochem 22(5):673–676

    Article  CAS  Google Scholar 

  • Liu X, Hsu SP, Liu W-C, Wang Y-M, Liu X, Lo C-S, Lin Y-C, Nabilla SC, Li Z, Hong Y (2019) Salivary electrochemical cortisol biosensor based on tin disulfide nanoflakes. Nanoscale Res Lett 14(1):1–9

    Article  Google Scholar 

  • Liu Y, Wu B, Tanyi EK, Yeasmin S, Cheng L-J (2020) Label-free sensitive detection of steroid hormone cortisol based on target-induced fluorescence quenching of quantum dots. Langmuir 36(27):7781–7788

    Article  CAS  Google Scholar 

  • Macdonald J, Houghton P, Xiang D, Duan W, Shigdar S (2016) Truncation and mutation of a transferrin receptor aptamer enhances binding affinity. Nucleic Acid Ther 26(6):348–354

    Article  CAS  Google Scholar 

  • Moghadam FM, Bigdeli M, Tamayol A, Shin SR (2021) TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure. Sens Actuators B Chem 344:130160

    Article  Google Scholar 

  • Pali M, Jagannath B, Lin K-C, Upasham S, Sankhalab D, Upashama S, Muthukumar S, Prasad S (2021) CATCH (Cortisol Apta WATCH):‘bio-mimic alarm’ to track anxiety, stress immunity in human sweat. Electrochim Acta 390:138834

    Article  CAS  Google Scholar 

  • Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    Article  Google Scholar 

  • Sanghavi BJ, Moore JA, Chávez JL, Hagen JA, Kelley-Loughnane N, Chou C-F, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252

    Article  CAS  Google Scholar 

  • Sharma TK, Bruno JG, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35(2):275–301

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  • Tuteja SK, Ormsby C, Neethirajan S (2018) Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-Micro Lett 10(3):41

    Article  Google Scholar 

  • Whitworth JA, Williamson PM, Mangos G, Kelly JJ (2005) Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag 1(4):291

    Article  CAS  Google Scholar 

  • Zhang J, Gopinath SC (2020) Quantification of cortisol for the medical diagnosis of multiple pregnancy-related diseases. 3 Biotech 10(2):1–10

    Article  Google Scholar 

  • Zhang Y, Wei Q (2016) The role of nanomaterials in electroanalytical biosensors: a mini review. J Electroanal Chem 781:401–409

    Article  CAS  Google Scholar 

  • Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G (2015) Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B 3(12):2487–2496

    Article  CAS  Google Scholar 

  • Zhao J, Chen G, Zhu L, Li G (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13(1):31–33

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author VS acknowledges the Department of Science and Technology (DST), Government of India, for INSPIRE fellowship (IF170339). Authors acknowledge Mr. Digvijay Singh Naruka for performing circular dichroism and isothermal titration colorimetry experiments at CSIR-IMTECH, Chandigarh. TKS acknowledge Department of Biotechnology (DBT) for funding support through Translational Research Program (BT/PR30159/MED/15/188/2018).

Author information

Authors and Affiliations

Authors

Contributions

VS: conceptualization, methodology, experimentation, data curation and writing—original draft preparation. TKS: conceptualization, supervision, data interpretation, writing—manuscript reviewing and editing. IK: supervision, data analysis, writing—manuscript reviewing and editing.

Corresponding authors

Correspondence to Tarun Kumar Sharma or Inderpreet Kaur.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 777 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Sharma, T.K. & Kaur, I. Electrochemical detection of cortisol on graphene quantum dots modified electrodes using a rationally truncated high affinity aptamer. Appl Nanosci 11, 2577–2588 (2021). https://doi.org/10.1007/s13204-021-02086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02086-x

Keywords

Navigation