Skip to main content
Log in

Energy-dependent surface nanopatterning of Si (100) for different projectiles: a tunable anisotropic wettability of ripple surface

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In recent years, ion-beam irradiation (IBI) has been proven an effective approach for the mass production of nanopatterns on the surfaces of wide range of materials. However, the role of different ion beam masses (Ar and Kr) needs attention for potential use of ripple patterns in wettability applications. In this work, we present a systematic study on the growth of ripple patterns for the two different projectiles of Ar+ and Kr+ and, furthermore, their anisotropic behaviour of wettability. An increase in wavelength and amplitude of ripples on Si (100) surface with increase in ion beam energy from 60 to100 keV has been observed. Wavelength of ripples is found to be higher for the Ar+ as compared to Kr+ at each irradiation energy value. A power law dependency of ripple wavelength on ion beam energy has been proposed as λ ~ Em, where ‘m’ is found to be 0.48 ± 0.0008 for Ar+ and 0.85 ± 0.06 for Kr+ beam, which shows the importance of mass re-distribution in ripples growth. Furthermore, observed variation in the contact angle is found to be deviated from Wenzel's law which is attributed to a reduction in the surface free energy of ion implanted Si ripple surfaces. Hence, the near surface damage under the incorporation of Ar/Kr atoms alters the chemical composition and which is effectively controlling the anisotropic wettability of ripples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradley RM, Harper JM (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol Vac Surf Films 6:2390–2395

    Article  CAS  Google Scholar 

  • Carter G, Vishnyakov V (1996) Roughening and ripple instabilities on ion-bombarded Si. Phys Rev B 54:17647

    Article  CAS  Google Scholar 

  • Castro M, Cuerno R (2012) Hydrodynamic approach to surface pattern formation by ion beams. Appl Surf Sci 258:4171–4178

    Article  CAS  Google Scholar 

  • Castro M, Gago R, Vázquez L, Muñoz-García J, Cuerno R (2012) Stress-induced solid flow drives surface nanopatterning of silicon by ion-beam irradiation. Phys Rev B 86:214107

    Article  Google Scholar 

  • Castro M, Gago R, Vázquez L, Muñoz-García J, Cuerno R (2013) Energy dependence of the ripple wavelength for ion-beam sputtering of silicon: experiments and theory. AIP Conference Proceedings, AIP, USA, pp 380–385

    Google Scholar 

  • Chini T, Sanyal M, Bhattacharyya S (2002) Energy-dependent wavelength of the ion-induced nanoscale ripple. Phys Rev B 66:153404

    Article  Google Scholar 

  • Eklund EA, Bruinsma R, Rudnick J, Williams RS (1991) Submicron-scale surface roughening induced by ion bombardment. Phys Rev Lett 67:1759

    Article  CAS  Google Scholar 

  • Elson JM, Bennett JM (1995) Calculation of the power spectral density from surface profile data. Appl Opt 34:201–208

    Article  CAS  Google Scholar 

  • Erlebacher J, Aziz MJ, Chason E, Sinclair MB, Floro JA (1999) Spontaneous pattern formation on ion bombarded Si (001). Phys Rev Lett 82:2330

    Article  CAS  Google Scholar 

  • Erlebacher J, Aziz MJ, Chason E, Sinclair MB, Floro JA (2000) Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si (001). J Vac Sci Technol Vac Surf Films 18:115–120

    Article  CAS  Google Scholar 

  • Garg S, Datta D, Ghatak J, Thakur I, Khare K, Kanjilal D et al (2016) Tunable wettability of Si through surface energy engineering by nanopatterning. RSC Adv 6:48550–48557

    Article  CAS  Google Scholar 

  • Habenicht S, Bolse W, Feldermann H, Geyer U, Hofsäss H, Lieb K et al (2000) Ripple topography of ion-beam–eroded graphite: a key to ion-beam–induced damage tracks. EPL 50:209

    Article  CAS  Google Scholar 

  • Hara S, Izumi S, Kumagai T, Sakai S (2005) Surface energy, stress and structure of well-relaxed amorphous silicon: a combination approach of ab initio and classical molecular dynamics. Surf Sci 585:17–24

    Article  CAS  Google Scholar 

  • Kardar M, Parisi G, Zhang Y-C (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889

    Article  CAS  Google Scholar 

  • Kumar T, Kumar M, Gupta G, Pandey RK, Verma S, Kanjilal D (2012) Role of surface composition in morphological evolution of GaAs nano-dots with low-energy ion irradiation. Nanoscale Res Lett 7:552

    Article  Google Scholar 

  • Kumar T, Singh U, Kumar M, Ojha S, Kanjilal D (2014) Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation. Curr Appl Phys 14:312–317

    Article  Google Scholar 

  • Kumar T, Panchal V, Kumar A, Kanjilal D (2016) Nano-pits on GaAs (1 0 0) surface: preferential sputtering and diffusion. Nucl Instrum Methods Phys Res Sect B 379:52–56

    Article  CAS  Google Scholar 

  • Lopez-Cazalilla A, Ilinov A, Bukonte L, Nordlund K, Djurabekova F, Norris S et al (2018a) Simulation of redistributive and erosive effects in a-Si under Ar+ irradiation. Nucl Instrum Methods Phys Res Sect B 414:133–140

    Article  CAS  Google Scholar 

  • Lopez-Cazalilla A, Chowdhury D, Ilinov A, Mondal S, Barman P, Bhattacharyya S et al (2018b) Pattern formation on ion-irradiated Si surface at energies where sputtering is negligible. J Appl Phys 123:235108

    Article  Google Scholar 

  • Lopez-Cazalilla A, Djurabekova F, Ilinov A, Fridlund C, Nordlund K (2020) Direct observation of ion-induced self-organization and ripple propagation processes in atomistic simulations. Mater Res Lett 8:110–116

    Article  CAS  Google Scholar 

  • Madi CS, Anzenberg E, Ludwig KF Jr, Aziz MJ (2011) Mass redistribution causes the structural richness of ion-irradiated surfaces. Phys Rev Lett 106:066101

    Article  Google Scholar 

  • Makeev MA, Barabási A-L (1997) Ion-induced effective surface diffusion in ion sputtering. Appl Phys Lett 71:2800–2802

    Article  CAS  Google Scholar 

  • Makeev MA, Cuerno R, Barabasi A-L (2002) Morphology of ion-sputtered surfaces. Nucl Instrum Methods Phys Res Sect B 197:185–227

    Article  CAS  Google Scholar 

  • Möller W, Eckstein W (1984) Tridyn—a TRIM simulation code including dynamic composition changes. Nucl Instrum Methods Phys Res Sect B 2:814–818

    Article  Google Scholar 

  • Munoz-Garcia J, Vazquez L, Castro M, Gago R, Redondo-Cubero A, Moreno-Barrado A et al (2014) Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Mater Sci Eng R Rep 86:1–44

    Article  Google Scholar 

  • Nordlund K (1995) Molecular dynamics simulation of ion ranges in the 1–100 keV energy range. Comput Mater Sci 3:448–456

    Article  CAS  Google Scholar 

  • Norris SA, Samela J, Bukonte L, Backman M, Djurabekova F, Nordlund K et al (2011) Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat Commun 2:276

    Article  Google Scholar 

  • Park S, Kahng B, Jeong H, Barabási A-L (1999) Dynamics of ripple formation in sputter erosion: nonlinear phenomena. Phys Rev Lett 83:3486

    Article  CAS  Google Scholar 

  • Prinz GA (1999) Magnetoelectronics applications. J Magn Magn Mater 200:57–68

    Article  CAS  Google Scholar 

  • Rusponi S, Costantini G, Boragno C, Valbusa U (1998) Ripple wave vector rotation in anisotropic crystal sputtering. Phys Rev Lett 81:2735

    Article  CAS  Google Scholar 

  • Stamp G, Ong Y, Kumar R, Zhou C (2006) DECADA: tool for discrete-event control and diagnosis analysis. In: 2006 8th International Workshop on Discrete Event Systems: IEEE, p 396–397.

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  • Yadav R, Kumar T, Baranwal V, Kumar VM, Priya P et al (2017) Fractal characterization and wettability of ion treated silicon surfaces. J Appl Phys 121:055301

    Article  Google Scholar 

  • Young T (1805) III. An essay on the cohesion of fluids. Phil Trans R Soc London 95:65–87

    Article  Google Scholar 

  • Zdyb A, Olchowik J, Mucha M (2006) Dependence of GaAs and Si surface energy on the misorientation angle of crystal planes. Mater Sci-Pol 24:1109–1114

    CAS  Google Scholar 

  • Ziberi B, Frost F, Höche T, Rauschenbach B (2005) Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys Rev B 72:235310

    Article  Google Scholar 

Download references

Acknowledgements

The help received from Dr. Indra Sulania, IUAC, New Delhi for AFM characterization is gratefully acknowledged here. We are also thankful to Dr. D. Kanjilal, IUAC, New Delhi, for helping in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuj Kumar.

Ethics declarations

Conflict of interest

Authors’ have no conflict of interest with other work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, Kumar, T., Ojha, S. et al. Energy-dependent surface nanopatterning of Si (100) for different projectiles: a tunable anisotropic wettability of ripple surface. Appl Nanosci 13, 3189–3196 (2023). https://doi.org/10.1007/s13204-021-01975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01975-5

Keywords

Navigation