Skip to main content

Advertisement

Log in

Bacterial pigments coupled \(\hbox {TiO}_2\)-carbon nanohybrid: understanding the interfacial effect on enhanced Fluorescence

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Deployment of engineered photoactive nanoparticles is of significant contemporary interest. In this context, especially the use of titania (\(\hbox {TiO}_2\))-incorporated biomolecules in several solar-driven systems is of greater concern. This paper reports up-regulation of photon capture and enhancement of emission with time, tailoring a pigment-nanohybrid interface. A \(\hbox {TiO}_2\)-carbon nano-hybrid was synthesized using green technology and tailored with pigments, harvested from the bacteria Rhodobacter capsulatus SB1003. The nano-bio-hybrid system shows a significant quantum yield for enhanced emission through absorbing light at 400 nm. The tailored interface is capable of showing an increase in fluorescence enhancement for only bacterial pigments. The structural and morphological analysis of the system was correlated using Raman and FTIR spectroscopy, while the fluorescence spectroscopic analysis, provided insights to determine the kinetic parameters of the emitted photons. The study shows the variation of the surface topology of \(\hbox {TiO}_2\)-carbon nanohybrids can alter the photoinduced aggregation dynamics of the tailored pigments, causing differential fluorescence enhancement. In addition, the synergic bonding alters the energy band structure present in the synthesized nano-bio-interface that supports the separation of the induced charges, a  affecting the electron-hole recombination. Furthermore, the present investigation provides a green approach to obtain a sustainable tool for regulated photon capture and energy transfer, indicating its application in opto-electronic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data generated during the present study are available from the corresponding authors on reasonable request.

References

  • Biel AJ (1986) Control of bacteriochlorophyll accumulation by light in Rhodobacter capsulatus. J Bacteriol 168(2):655

    Article  CAS  Google Scholar 

  • Biswas M, Jung YS, Kim HK, Kumar K, Hughes GJ, Newcomb S, Henry MO, McGlynn E (2011) Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures. Phys Rev B 83(23):235320

    Article  Google Scholar 

  • Bose A, Chowdhury R, Nandi S, Raja SO, Ray S, Bhattacharyya K, Dasgupta AK (2020a) Time-dependent enhancement of fluorescence from Rhodobacter capsulatus SB1003 and its critical dependence on concentration temperature and static magnetic field. J Biol Phys 1–17

  • Bose A, Ray S, Singh VK, Banerjee A, Nayak C, Singha A, Bhattacharyya A, Chattopadhyay D, Chakrabarti A, Das S et al (2020b) Differential graphene functions on two photosynthetic microbes. Adv Nat Sci Nanosci Nanotechnol 11(1):015004

    Article  CAS  Google Scholar 

  • Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials

  • Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun 5(1):1

    Article  Google Scholar 

  • Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751

    Article  CAS  Google Scholar 

  • Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115(21):10694

    Article  CAS  Google Scholar 

  • Fu ZC, Yang S (2014) Photoelectric conversion performance of natural photosynthetic pigments from three typical members of purple bacteria for dye-sensitized solar cells. CIESC J 65(8):3202

    CAS  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129(2):724

    Article  CAS  Google Scholar 

  • Karam TE, Siraj N, Ranasinghe JC, Kolic PE, Regmi BP, Warner IM, Haber LH (2020) Efficient photoinduced energy transfer in porphyrin-based nanomaterials. J Phys Chem C 124(44):24533

    Article  CAS  Google Scholar 

  • Kathiravan A, Anbazhagan V, Jhonsi MA, Renganathan R (2008) Fluorescence quenching of meso-tetrakis (4-sulfonatophenyl) porphyrin by colloidal TiO2. Spectrochim Acta Part A Mol Biomol Spectrosc 70(3):615

    Article  CAS  Google Scholar 

  • Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129(27):8406

    Article  CAS  Google Scholar 

  • Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T et al (2017) The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 12(12):e0189816

    Article  Google Scholar 

  • Maiti NC, Mazumdar S, Periasamy N (1998) J-and H-aggregates of porphyrin- surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102(9):1528

    Article  CAS  Google Scholar 

  • Mohammadpour R, Janfaza S, Abbaspour-Aghdam F (2014) Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: A new application for microalgae. Bioresour Technol 163:1

    Article  CAS  Google Scholar 

  • Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S (2009) Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2-MWCNT nanocomposites. ACS Appl Mater Interfaces 1(9):2030

    Article  CAS  Google Scholar 

  • Pace ML, McManus GB, Findlay SE (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35(4):795

    Article  Google Scholar 

  • Pan J, Benkö G, Xu Y, Pascher T, Sun L, Sundström V, Polívka T (2002) Photoinduced electron transfer between a carotenoid and TiO2 nanoparticle. J Am Chem Soc 124(46):13949

    Article  CAS  Google Scholar 

  • Pandey RK, Chitgupi U, Lakshminarayanan V (2012) Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission. J Porphyr Phthalocyanines 16(09):1055

    Article  CAS  Google Scholar 

  • Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti 3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591

    Article  CAS  Google Scholar 

  • Rajeswari P, Tiwari B, Ram S, Pradhan D (2018) A biogenic TiO2-CO nanohybrid grown from a Ti 4+-polymer complex in green tissues of chilis, interface bonding, and tailored photocatalytic properties. J Mater Sci 53(5):3131

    Article  CAS  Google Scholar 

  • Ruiz-Hitzky E, Ariga K, Lvov YM (2008) Bio-inorganic hybrid nanomaterials: strategies, synthesis, characterization and applications. Wiley, New York

    Google Scholar 

  • Scheer H (1991) Structure and occurrence of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30, CRC Press, Boca Raton

  • Sun WJ, Li J, Yao GP, Zhang FX, Wang JL (2011) Surface-modification of TiO2 with new metalloporphyrins and their photocatalytic activity in the degradation of 4-notrophenol. Appl Surf Sci 258(2):940

    Article  CAS  Google Scholar 

  • Takeuchi M, Tanaka S, Shinkai S (2005) Chem Commun 44:5539

  • Tennakone K, Kumara G, Kottegoda I, Perera V, Weerasundara P (1998) Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells. J Photochem Photobiol A 117(2):137

    Article  CAS  Google Scholar 

  • Tsui LK, Huang J, Sabat M, Zangari G (2014) Visible light sensitization of TiO2 nanotubes by bacteriochlorophyll-C dyes for photoelectrochemical solar cells. ACS Sustain Chem Eng 2(9):2097

    Article  CAS  Google Scholar 

  • Vijayalakshmi R, Rajendran V (2012) Synthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 4(2):1183

    CAS  Google Scholar 

  • Voloshin R, Bedbenov V, Gabrielyan D, Brady N, Kreslavski V, Zharmukhamedov S, Rodionova M, Bruce B, Allakhverdiev S (2017) Optimization and characterization of TiO2-based solar cell design using diverse plant pigments. Int J Hydrog Energy 42(12):8576

    Article  CAS  Google Scholar 

  • Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL, Walsh PJ, Gordon K, Humphry-Baker R, Nazeeruddin MK, Grätzel M (2005) Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J Phys Chem B 109(32):15397

    Article  CAS  Google Scholar 

  • Ye TX, Ye SL, Chen DM, Chen QA, Qiu B, Chen X (2012) Spectroscopic characterization of tetracationic porphyrins and their noncovalent functionalization with graphene. Spectrochim Acta Part A Mol Biomol Spectrosc 86:467

    Article  CAS  Google Scholar 

  • Zeynali A, Ghiasi TS, Riazi G, Ajeian R (2017) Organic solar cell based on photosystem I pigment-protein complex, fabrication and optimization. Org Electron 51:341

    Article  CAS  Google Scholar 

  • Zhang LW, Fu HB, Zhu YF (2008) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18(15):2180

    Article  CAS  Google Scholar 

  • Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380

    Article  CAS  Google Scholar 

  • Zhang X, Wan S, Pu J, Wang L, Liu X (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21(33):12251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Biotechnology, Government of India (BT/PR3957/NNT/28/659/2013) for fund utilization in course of the present study.

Author information

Authors and Affiliations

Authors

Contributions

AB carried out all UV-VIS spectroscopy, fluorescence spectroscopy, and dynamic light scattering, microbiological experiments, and wrote the paper. AD helped to carry out the experiments. PVR carried out Raman, FTIR, and electron microscopy and wrote these portions and revised the paper. AKD conceived the idea and wrote the paper.

Corresponding authors

Correspondence to P. V. Rajeswari or Anjan Kr Dasgupta.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, A., Das, A., Rajeswari, P.V. et al. Bacterial pigments coupled \(\hbox {TiO}_2\)-carbon nanohybrid: understanding the interfacial effect on enhanced Fluorescence. Appl Nanosci 11, 2009–2018 (2021). https://doi.org/10.1007/s13204-021-01925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01925-1

Keywords

Navigation