Abstract
Acinetobacter baumannii, a nosocomial pathogen, and member of ESKAPE bacteria are currently a global threat. A. baumannii is equipped naturally laden with strong intrinsic resistance factors and is also capable of acquiring many resistance determinants against different antibiotic classes. Intrinsic resistome is defined as a mechanism of antibiotic resistance that is innately expressed/chromosomally encoded, irrespective of prior antibiotic exposure. Although these innate resistance factors are themselves poorly effective in conferring a high-level resistance, together with other resistance factors their force can be large enough to confer an organism multidrug resistant (MDR). In A. baumannii, which are predominantly of environmental origin (an opportunistic pathogen), weight on the impact of extreme resistance and evolution is often laid on their intrinsic antibiotic resistance phenotype. This review is focused on emphasizing the role of intrinsic resistome involved in the antibiotic resistance of A. baumannii, the understanding of which will be very helpful in combating this opportunistic pathogen. With a dead-end in the treatment of infections due to MDR A. baumannii, different avenues have to be explored for a better treatment option. This review will also discuss the application of nanoparticles as antimicrobials and as a conjugate for restoring the bioactivity of the available drugs against MDR pathogens.
Similar content being viewed by others
Abbreviations
- ESKAPE:
-
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species
- MDR:
-
Multidrug-resistant
- XDR:
-
Extensive drug-resistant
- PDR:
-
Pan-drug resistant
- BAP:
-
Biofilm-associated protein
- LPS:
-
Lipopolysaccharides
- OMVs:
-
Outer membrane vesicles
- PBP:
-
Penicillin-binding proteins
- ADC:
-
Acinetobacter-derived cephalosporinases
- RND:
-
Resistance nodulation division
- CRAB:
-
Carbapenem-resistant
- MBL:
-
Metallo β-lactamase
- CHDLs:
-
Chromosomally mediated carbapenem hydrolyzing oxacillinase
- OMPs:
-
Outer membrane proteins
- CarO:
-
Carbapenem resistance-associated Omp
- MFS:
-
Major facilitator superfamily
- MATE:
-
Multidrug and toxic compound extrusion
- QRDRs:
-
Quinolone resistance-determining regions
- NP:
-
Nanoparticles
- ROS:
-
Reactive-oxygen species
- Ag:
-
Silver, Au- Gold, CeO2-cerium oxide nanoparticles
- FeO:
-
Ferrous oxide
- Cu:
-
Copper
- NiO:
-
Nickle oxide
- ZnO:
-
Zinc oxide
- TiO2 :
-
Titanium dioxide
- Al2O3 :
-
Aluminium oxide
References
Adams MD, Nickel GC, Bajaksouzian S et al (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the Pmrab two-component system. Antimicrob Agents Chemother 53:3628–3634
Alvarez-Ortega C, Wiegand I, Olivares J et al (2011) The intrinsic resistome of pseudomonas aeruginosa to β-lactams. Virulence 2:144–146
Ansari MA, Khan HM, Alzohairy MA et al (2015) Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant pseudomonas aeruginosa. World J Microbiol Biotechnol 31:153–164
Ashajyothi C, Harish KH, Dubey N et al (2016) Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J Nanostructure Chem 6:329–341
Aydemir H, Akduman D, Piskin N et al (2013) Colistin Vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 141:1214–1222
Banoee M, Seif S, Nazari ZE et al (2010) Zno Nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mat Res 93:557–561
Baptista PV, McCusker MP, Carvalho A et al (2018) Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front Microbiol 9:1441
Baranwal A, Srivastava A, Kumar P et al (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422
Behdad R, Pargol M, Mirzaie A et al (2020) Efflux pump inhibitory activity of biologically synthesized silver nanoparticles against multidrug-resistant Acinetobacter baumannii clinical isolates. J Basic Microbiol 60:494–507
Bellio P, Luzi C, Mancini A et al (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of Ceo2 nanoparticles on bacterial outer membrane permeability. Biochim Biophys Acta Biomembr 1860:2428–2435
Bhattacharya M, Toth M, Antunes NT et al (2014) Structure of the extended-spectrum class C β-lactamase Adc-1 from Acinetobacter baumannii. Acta Crystallogr D Biol Crystallogr 70:760–771
Bogaerts P, Naas T, El Garch F et al (2010) Ges extended-spectrum β-lactamases in acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother 54:4872–4878
Bou G, Cerveró G, Dominguez MA et al (2000) Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance Ina. baumannii is not due solely to the presence of β-lactamases. J Clin Microbiol 38:3299–3305
Brown S, Amyes S (2005) Oxa β-lactamases in acinetobacter: the story so far. J Antimicro Chemother 57:1–3
Burygin G, Khlebtsov B, Shantrokha A et al (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801
Cai Y, Chai D, Wang R et al (2012) Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 67:1607–1615
Carré G, Hamon E, Ennahar S et al (2014) Tio2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581
Catel-Ferreira M, Marti S, Guillon L et al (2016) The outer membrane porin Ompw of Acinetobacter baumannii is involved in iron uptake and colistin binding. FEBS Lett 590:224–231
Chamundeeswari M, Sobhana SL, Jacob JP et al (2010) Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol Appl Biochem 55:29–35
Chapartegui-Gonzalez I, Lazaro-Diez M, Bravo Z et al (2018) Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS ONE 13:e0201961
Choi O, Deng KK, Kim N-J et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074
Chopra S, Galande A (2011) A fluoroquinolone-resistant Acinetobacter baumannii without the quinolone resistance-determining region mutations. J Antimicrob Chemother 66:2668–2670
Christena LR, Mangalagowri V, Pradheeba P et al (2015) Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Adv 5:12899–12909
Corbella X, Ariza J, Ardanuy C et al (1998) Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother 42:793–802
Coyne S, Courvalin P, Perichon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953
Coyne S, Guigon G, Courvalin P et al (2010) Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray. Antimicrob Agents Chemother 54:333–340
Damier-Piolle L, Magnet S, Brémont S et al (2008) AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562
Durante-Mangoni E, Signoriello G, Andini R et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358
Egger S, Lehmann RP, Height MJ et al (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976
Evans AB, Hamouda A, Amyes GBS (2013) The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 19:223–238
Fajardo A, Martínez-Martín N, Mercadillo M et al (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS ONE 3:e1619
Fakhri A, Tahami S, Naji MJJ et al (2017) Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B Biol 169:21–26
Falagas ME, Vardakas KZ, Roussos NS (2015) Trimethoprim/sulfamethoxazole for acinetobacter spp.: a review of current microbiological and clinical evidence. Int J Antimicrob Agents 46:231–241
Fernández-Reyes M, Rodríguez-Falcón M, Chiva C et al (2009) The cost of resistance to colistin in Acinetobacter baumannii: a proteomic perspective. Proteomics 9:1632–1645
Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111
Furlan JPR, de Almeida OGG, De Martinis ECP et al (2019) Characterization of an environmental multidrug-resistant Acinetobacter seifertii and comparative genomic analysis reveals co-occurrence of antimicrobial resistance and metal tolerance determinants. Front Microbiol 10:2151
Fyfe C, Grossman TH, Kerstein K et al (2016) Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 6:a025395
Gan H M, Wengert P, Penix T et al (2019) Insight into the resistome and quorum sensing system of a divergent Acinetobacter Pittii isolate from an untouched site of the lechuguilla cave. bioRxiv 745182
Gao W, Zhang LJNRM (2020) Nanomaterials arising amid antibiotic resistance. Nat Rev Microbiol 19(1):5–6
Gehrlein M, Leying H, Cullmann W et al (1991) Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy 37:405–412
Gleckman R, Blagg N, Joubert DW (1981) Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy 1:14–20
Govindaraju K, Vasantharaja R, Suganya KU et al (2020) Unveiling the Anticancer and Antimycobacterial Potentials of Bioengineered Gold Nanoparticles. Process Biochem 96:213–219
Grossman TH (2016) Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med 6:a025387
Gu H, Ho P, Tong E et al (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Expert Rev Anti Infect Ther 3:1261–1263
Hackel MA, Tsuji M, Yamano Y et al (2017) in vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (Sidero-Wt-2014 Study). Antimicrob Agents Chemother 61:e00093-e117
Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter Baumannii virulence. Nat Rev Microbiol 16:91
Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211
Héritier C, Poirel L, Fournier P-E et al (2005) Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 49:4174–4179
Higgins PG, Poirel L, Lehmann M et al (2009) Oxa-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 53:5035–5038
Higgins PG, Stubbings W, Wisplinghoff H et al (2010) Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and-resistant Acinetobacter baumannii isolates. Antimicrob Agents Chemother 54:1613–1615
Hsu L-Y, Apisarnthanarak A, Khan E et al (2017) Carbapenem-resistant Acinetobacter baumannii and enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 30:1–22
Hsueh S-C, Lee Y-J, Huang Y-T et al (2018) In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother 74:380–386
Huh AJ, Kwon YJJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145
Hujer KM, Hamza NS, Hujer AM et al (2005) Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, Adc-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 49:2941–2948
Hujer KM, Hujer AM, Endimiani A et al (2009) Rapid determination of quinolone resistance in Acinetobacter spp. J Clin Microbiol 47:1436–1442
Hwang I-S, Hwang JH, Choi H et al (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726
Insua I, Majok S, Peacock AF et al (2017) Preparation and antimicrobial evaluation of polyion complex (Pic) nanoparticles loaded with polymyxin B. Eur Polym J 87:478–486
Jacob JM, John MS, Jacob A et al (2019) Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using ocimum sanctum leaf extract. Mat Res Express 6:045401
Jelinkova P, Mazumdar A, Sur VP et al (2019) Nanoparticle-drug conjugates treating bacterial infections. J Control Release 307:166–185
Johnning A, Karami N, Hallbäck ET et al (2018) The resistomes of six carbapenem-resistant pathogens–a critical genotype-phenotype analysis. Microb Genom 4(11):e000233
Josephson J (2006) The microbial resistome. Environ Sci Technol 40(21):6531–6534
Kadiyala U, Kotov NA, Scott VanEpps J (2018) Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr Pharm Des 24:896–903
Kesavan D, Vasudevan A, Wu L et al (2020) Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains. BMC Microbiol 20:31
Khashan KS, Sulaiman GM, Abdul Ameer FAK et al (2016) Synthesis, characterization and antibacterial activity of colloidal Nio nanoparticles. Pak J Pharm Sci 29(2):541–546
Krause KM, Serio AW, Kane TR et al (2016) Aminoglycosides: an overview. Cold Spring Harb Perspect Med 6(6):a027029
Kuo S-C, Lee Y-T, Yang Lauderdale T-L et al (2015) Contribution of acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front Microbiol 6:231
Kwon HI, Kim S, Oh MH et al (2019) Distinct role of outer membrane protein a in the intrinsic resistance of Acinetobacter baumannii and Acinetobacter nosocomialis. Infect Genet Evol 67:33–37
Lambert T, Gerbaud G, Galimand M et al (1993) Characterization of acinetobacter haemolyticus Aac (6’)-Ig Gene encoding an aminoglycoside 6’-N-acetyltransferase which modifies amikacin. Antimicrob Agents Chemother 37:2093–2100
Lari AR, Ardebili A, Hashemi A (2018) Ader-ades mutations and overexpression of the adeabc efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J Med Res 147:413
Lean SS, Suhaili Z, Ismail S et al (2014) prevalence and genetic characterization of carbapenem- and polymyxin-resistant Acinetobacter baumannii isolated from a Tertiary Hospital in Terengganu Malaysia. ISRN Microbiol 2014:953417
Lee C-R, Lee JH, Park M et al (2017) Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 7:55
Lenhard JR, Bulman ZP, Tsuji BT et al (2019) Shifting Gears: the future of polymyxin antibiotics. Antibiotics 8:42
Levin AS (2002) Multiresistant acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin Microbiol Infect 8:144–153
Li P, Li J, Wu C et al (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912
Lin M-F, Lan C-Y (2014) Antimicrobial resistance in Acinetobacter baumannii: from bench to bedside. WJCC 2:787
Magnet S, Courvalin P, Lambert T (2001) Resistance-Nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain Bm4454. Antimicrob Agents Chemother 45:3375–3380
Manchanda V, Sanchaita S, Singh N (2010) Multidrug resistant acinetobacter. J Glob Infect Dis 2:291–304
Mapara N, Sharma M, Shriram V et al (2015) Antimicrobial potentials of helicteres isora silver nanoparticles against extensively drug-resistant (Xdr) clinical isolates of pseudomonas aeruginosa. Appl Microbiol Biotechnol 99:10655–10667
Mitscher LA (1978) The chemistry of the tetracycline antibiotics. Marcel Dekker Inc, New York, N.Y.
Moffatt JH, Harper M, Adler B et al (2011) Insertion sequence isaba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother 55:3022–3024
Moffatt JH, Harper M, Harrison P et al (2010) Colistin Resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54:4971–4977
Munawer U, Raghavendra VB, Ningaraju S et al (2020) Biofabrication of gold nanoparticles mediated by the endophytic cladosporium species: photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm 588:119729
Nallathamby PD, Lee KJ, Desai T et al (2010) Study of the multidrug membrane transporter of single living pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry 49:5942–5953
Nejabatdoust A, Zamani H, Salehzadeh AJMDR (2019) Functionalization of Zno nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb Drug Resist 25:966–974
Nie D, Hu Y, Chen Z et al (2020) Outer membrane protein a (Ompa) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci 27:1–8
Papp-Wallace KM, Endimiani A, Taracila MA et al (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960
Patra P, Mitra S, Debnath N et al (2014) Ciprofloxacin conjugated zinc oxide nanoparticle: a camouflage towards multidrug resistant bacteria. Bull Mater Sci 37:199–206
Peleg AY, Potoski BA, Rea R et al (2006) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59:128–131
Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582
Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815
Penwell WF, Shapiro AB, Giacobbe RA et al (2015) Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother 59:1680–1689
Perez F, Hujer AM, Hujer KM et al (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484
Périchon B, Goussard S, Walewski V et al (2014) Identification of 50 class D β-lactamases and 65 acinetobacter-derived cephalosporinases in acinetobacter spp. Antimicrob Agents Chemother 58:936–949
Perry JA, Westman EL, Wright GD (2014) The antibiotic resistome: what’s new? Curr Opin Microbiol 21:45–50
Perry JA, Wright GD (2014) Forces shaping the antibiotic resistome. BioEssays 36:1179–1184
Poirel L, Naas T, Nordmann P (2010) Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 54:24–38
Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836
Pollitt S, Zalkin HJJ (1983) Role of primary structure and disulfide bond formation in beta-lactamase secretion. J Bacteriol 153:27–32
Richmond GE, Evans LP, Anderson MJ et al (2016) The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. Mbio 7:e00430-e516
Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24
Rogalski W (1985) Chemical modification of the tetracyclines. Springer, Heidelberg, Berlin, pp 179–316
Roy AS, Parveen A, Koppalkar AR et al (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37
Ruddaraju LK, Pammi SVN, Guntuku GS et al (2020) A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian j Pharm Sci 15:42–59
Saravanan M, Niguse S, Abdulkader M et al (2018) Review on emergence of drug-resistant tuberculosis (Mdr & Xdr-Tb) and its molecular diagnosis in Ethiopia. Microb Pathog 117:237–242
Sathiyavimal S, Vasantharaj S, Veeramani V et al (2021) Green chemistry route of biosynthesized copper oxide nanoparticles using psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J Environ Chem Eng 9:105033
Shaikh S, Nazam N, Rizvi SMD et al (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20:2468
Shaker MA, Shaaban MIJ (2017) Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int j Pharm 525:71–84
Shaw K, Rather P, Hare R et al (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Mol Biol Rev 57:138–163
Simakov N, Leonard DA, Smith JC et al (2017) A distal disulfide bridge in Oxa-1 β-lactamase stabilizes the catalytic center and alters the dynamics of the specificity determining Ω loop. J Phys Chem B 121:3285–3296
Singla P, Sikka R, Deeep A et al (2014) Co-production of Esbl and Ampc Β-lactamases in clinical isolates of A. baumannii and A. lwoffii in a tertiary care hospital from Northern India. J Clin Diagn Res 8:16
Siroy A, Cosette P, Seyer D et al (2006) Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 5:3385–3398
Sood D, Kumar N, Singh A et al (2018) Antibacterial and pharmacological evaluation of fluoroquinolones: a chemoinformatics approach. Genomics Inform 16:44–51
Soon RL, Nation RL, Cockram S et al (2010) Different surface charge of colistin-susceptible and-resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment. J Antimicrob Chemother 66:126–133
Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763
Strydom SJ, Rose WE, Otto DP et al (2013) Poly (Amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine: NBM 9:85–93
Sultan I, Rahman S, Jan AT et al (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 21:9–2066
Thaker M, Spanogiannopoulos P, Wright GD (2010) The tetracycline resistome. Cell Mol Life Sci 67:419–431
Tian G-B, Adams-Haduch JM, Taracila M et al (2011) Extended-spectrum Ampc cephalosporinase in Acinetobacter baumannii: Adc-56 confers resistance to cefepime. Antimicrob Agents Chemother 55:4922–4925
Tiwari V, Mishra N, Gadani K et al (2018) Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:1218
Tiwari V, Vashistt J, Kapil A et al (2012) Comparative proteomics of inner membrane fraction from carbapenem-resistant Acinetobacter baumannii with a reference strain. PLoS ONE 7:e39451
Trebosc V, Gartenmann S, Tötzl M et al (2019) Dissecting colistin resistance mechanisms in extensively drug-resistant Acinetobacter baumannii clinical isolates. Mbio 10:e01083-e1119
Turton JF, Ward ME, Woodford N et al (2006a) The role of Is Aba1 in expression of oxa carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77
Turton JF, Woodford N, Glover J et al (2006b) Identification of Acinetobacter baumannii by detection of the blaoxa-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44:2974–2976
Venter H, Mowla R, Ohene-Agyei T et al (2015) Rnd-type drug efflux pumps from gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6:377
Vila J, Martí S, Sanchez-Céspedes J (2007) Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59:1210–1215
Wang L, Hu C, Shao LJ (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227
Wang Y, Wu C, Zhang Q et al (2012) Identification of New Delhi Metallo-β-Lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE 7:37152
Wang Z, Dong K, Liu Z et al (2017b) Activation of biologically relevant levels of reactive oxygen species by Au/G-C3n4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157
Wencewicz TA (2019) Crossroads of antibiotic resistance and biosynthesis. J Mol Biol 23(18):3370–3399
Williamson R, Collatz E, Gutmann L (1986) Mechanisms of action of β-lactam antibiotics and mechanisms of Non-enzymatic resistance. Presse Med 15:2282–2289
Yu Z, Qin W, Lin J (2015) Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int 2015:679109
Yun S-H, Choi C-W, Kwon S-O et al (2011) quantitative proteomic analysis of cell wall and plasma membrane fractions from multidrug-resistant Acinetobacter baumannii. J Proteome Res 10:459–469
Yun S-H, Choi C-W, Park S-H et al (2008) Proteomic analysis of outer membrane proteins from Acinetobacter baumannii Du202 in tetracycline stress condition. J Microbiol 46:720–727
Funding
National Natural Science Foundation of China (grant no.81771756). The Postdoctoral Foundation of Jiangsu Province (grant no.1601002C).
Author information
Authors and Affiliations
Contributions
Aparna Vasudevan and Dineshkumar Kesavan wrote the manuscript. Zhaoliang Su critically reviewed and edited the manuscript. Shengjun Wang revised for its integrity and accuracy. Huaxi Xu approved the final version of this manuscript and takes responsibility for its contents.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aparna, V., Dineshkumar, K., Su, Z. et al. The innate resistome of “recalcitrant” Acinetobacter baumannii and the role of nanoparticles in combating these MDR pathogens. Appl Nanosci 13, 1–14 (2023). https://doi.org/10.1007/s13204-021-01877-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13204-021-01877-6