Skip to main content

L10 phase formation in FePd thin films induced by H2 during annealing

Abstract

Equiatomic FePd thin films with a thickness of 5 nm were deposited at room temperature by magnetron sputtering on the thermally oxidized silicon substrates. Annealing in vacuum and in hydrogen atmosphere was used to transform the chemically disordered A1 FePd films into the chemically ordered L10 FePd phase. The influence of annealing atmosphere, annealing temperature, and annealing time on the ordering process of the films was studied. Annealing in hydrogen atmosphere at 650 °C accelerates the ordering process and leads to the L10 FePd phase. However, the incorporation of H also influences the electronic structure and thus the magnetic properties. A further increase in annealing time or temperature (over 650 °C) accelerates the L10 ordering process but also alters drastically the film morphology forming a fine grainy structure, which appears X-ray amorphous rares. The latter even results in a most likely superparamagnetic state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Caro P, Cebollada A, Ravelosona D, Briones F, Garcia D, Vázquez M, Hernando A (1997) The influence of the Pt buffer layer on the perpendicular magnetic anisotropy in epitaxial FePd(001) ordered alloys grown by sputtering. J Appl Phys 81:5050–5052. https://doi.org/10.1063/1.364504

    CAS  Article  Google Scholar 

  2. Chang HW, Yuan FT, Chen WC, Wei DH, Lin MC, Su CC, Wang CR, Shih CW, Chang WC, Yao YD (2015) Hard magnetic property improvement of sputter-prepared FePd films on glass substrates by underlayering with refractory Nb, Mo, and W Elements. IEEE Trans Magn 51:1–4. https://doi.org/10.1109/TMAG.2015.2438896

    CAS  Article  Google Scholar 

  3. Chang P-C, Chuang T-H, Wei D-H, Lin W-C (2020) Thermally modulated hydrogenation in Fe x Pd 1–x alloy films: temperature-driven peculiar variation of magnetism. Appl Phys Lett 116:102407. https://doi.org/10.1063/1.5142625

    CAS  Article  Google Scholar 

  4. Clavero C, García-Martín JM, Costa Krämer JL, Armelles G, Cebollada A, Huttel Y, Lukaszew RA, Kellock AJ (2006) Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in FePd thin films sputtered on MgO (001). Phys Rev B 73:174405. https://doi.org/10.1103/PhysRevB.73.174405

    CAS  Article  Google Scholar 

  5. Deshpande AR, Blachere JR, Wiezorek JMK (2006) Texture evolution in combined reaction transformed equiatomic ferromagnetic L10-ordered FePd intermetallics. Scr Mater 54:955–960. https://doi.org/10.1016/j.scriptamat.2005.10.026

    CAS  Article  Google Scholar 

  6. Fernando GW (2008) Chapter 5 probing layered systems: a brief guide to experimental techniques. Handb Met Phys 4:111–130. https://doi.org/10.1016/S1570-002X(07)00005-5

    Article  Google Scholar 

  7. Gehanno V, Hoffmann R, Samson Y, Marty A, Auffret S (1999) In plane to out of plane magnetic reorientation transition in partially ordered FePd thin films. Eur Phys J B 10:457–464. https://doi.org/10.1007/s100510050874

    CAS  Article  Google Scholar 

  8. Gonzalez EA, Jasen PV, Castellani NJ, Juan A (2004) The effect of interstitial hydrogen on the electronic structure of Fe–Pd alloys. J Phys Chem Solids 65:1799–1807. https://doi.org/10.1016/j.jpcs.2004.05.008

    CAS  Article  Google Scholar 

  9. Hsiao SN, Liu SH, Chen CC, Chou CL, Chen SK, Su SH, Chiu KF, Sung CK (2016) A comparison of rapid-annealed FePt and FePd thin films: internal stress, L 1 0 ordering, and texture. Vacuum 125:1–5. https://doi.org/10.1016/j.vacuum.2015.11.022

    CAS  Article  Google Scholar 

  10. Ichitsubo T, Takashima S, Matsubara E, Tamada Y, Ono T (2010) Exchange-coupling of c-axis oriented L10–FePd and Fe in FePd/Fe thin films. Appl Phys Lett 97:182508. https://doi.org/10.1063/1.3514582

    CAS  Article  Google Scholar 

  11. Ichitsubo T, Takashima S, Matsubara E, Tsukimoto S, Tamada Y, Ono T (2011) Control of c-axis orientation of L10-FePd in dual-phase-equilibrium FePd/Fe thin films. J Appl Phys 109:033513. https://doi.org/10.1063/1.3544466

    CAS  Article  Google Scholar 

  12. Kamiki T, Nakagawa S (2004) Fabrication of FePt ordered alloy films by annealing in hydrogen atmosphere. J Magn Soc Japan 28:330–334. https://doi.org/10.3379/jmsjmag.28.330

    CAS  Article  Google Scholar 

  13. Kim J, Choi JW, Kim H-J, Cho S-G, Kim J, Kim HS (2012) Thickness-dependent magnetic domain structures in epitaxial FePd films. J Korean Phys Soc 60:10–13. https://doi.org/10.3938/jkps.60.10

    CAS  Article  Google Scholar 

  14. Ko J, Bae T, Hong J (2012) Effect of a change in thickness on the structural and perpendicular magnetic properties of L 1 0 ordered FePd ultra-thin films with (001) texture. J Appl Phys 112:113919. https://doi.org/10.1063/1.4769737

    CAS  Article  Google Scholar 

  15. Kryder MH, Gage EC, McDaniel TW, Challener WA, Rottmayer RE, Ganping Ju, Hsia Y-T, Erden MF (2008) Heat assisted magnetic recording. Proc IEEE 96:1810–1835. https://doi.org/10.1109/JPROC.2008.2004315

    CAS  Article  Google Scholar 

  16. Li B, Liu W, Zhao XG, Ma S, Gong WJ, Feng JN, Wang F, Zhang ZD (2013) Ordering temperature of L10-FePd film reduced by Ag underlayer. Mater Lett 100:58–61. https://doi.org/10.1016/j.matlet.2013.02.102

    CAS  Article  Google Scholar 

  17. Lin H-P, Kuo J-C (2011) Texture and magnetic properties of electrodeposited FePd films. Mater Lett 65:3537–3539. https://doi.org/10.1016/j.matlet.2011.07.063

    CAS  Article  Google Scholar 

  18. Lin W-C, Tsai C-J, Huang H-Y, Wang B-Y, Mudinepalli VR, Chiu H-C (2015) Hydrogen-mediated long-range magnetic ordering in Pd-rich alloy film. Appl Phys Lett 106:012404. https://doi.org/10.1063/1.4905463

    CAS  Article  Google Scholar 

  19. Lin W-C, Wang B-Y, Huang H-Y, Tsai C-J, Mudinepalli VR (2016) Hydrogen absorption-induced reversible change in magnetic properties of Co–Pd alloy films. J Alloys Compd 661:20–26. https://doi.org/10.1016/j.jallcom.2015.11.144

    CAS  Article  Google Scholar 

  20. Liu SH, Chen CC, Hsiao SN, Chen SK, Chang YC, Su SH, Chiu KF (2015) Crystallographic structure and magnetic properties of polycrystalline FePd thin films on glass substrate. Appl Phys A 119:623–627. https://doi.org/10.1007/s00339-015-9002-x

    CAS  Article  Google Scholar 

  21. Menéndez J, Caro P, Cebollada A, Briones F, Garcia D, Vázquez M, Hernando A, Garcia J (1999) Structure and magnetic anisotropies in sputtered FePd(110) thin films. J Magn Magn Mater 206:1–7. https://doi.org/10.1016/S0304-8853(99)00538-7

    Article  Google Scholar 

  22. Munbodh K, Perez FA, Lederman D (2012) Changes in magnetic properties of Co/Pd multilayers induced by hydrogen absorption. J Appl Phys 111:123919. https://doi.org/10.1063/1.4729797

    CAS  Article  Google Scholar 

  23. Myagkov VG, Zhigalov VS, Bykova LE, Solov’ev LA, Bondarenko GN, (2010) Solid-phase synthesis of L10-FePd(001) epitaxial thin films: Structural transformations and magnetic anisotropy. JETP Lett 91:481–485. https://doi.org/10.1134/S0021364010090109

    CAS  Article  Google Scholar 

  24. Myagkov V, Bayukov O, Mikhlin Y, Zhigalov V, Bykova L, Bondarenko G (2014) Long-range chemical interactions in solid-state reactions: effect of an inert Ag interlayer on the formation of L1 0 -FePd in epitaxial Pd(0 0 1)/Ag(0 0 1)/Fe(0 0 1) and Fe(0 0 1)/Ag(0 0 1)/Pd(0 0 1) trilayers. Philos Mag 94:2595–2622. https://doi.org/10.1080/14786435.2014.926037

    CAS  Article  Google Scholar 

  25. Perzanowski M, Krupinski M, Zarzycki A, Zabila Y, Marszalek M (2014) Determination of grain shape of laser-irradiated FePdCu thin alloy films. Appl Surf Sci 302:129–133. https://doi.org/10.1016/j.apsusc.2013.09.157

    Article  Google Scholar 

  26. Piramanayagam SN, Chong TC (2012) Developments in data storage: materials perspective. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  27. Polit A, Makarov D, Brombacher C, Krupinski M, Perzanowski M, Zabila Y, Albrecht M, Marszałek M (2015) Structural and magnetic properties of Cu-alloyed FePd films. J Magn Magn Mater 381:316–321. https://doi.org/10.1016/j.jmmm.2015.01.017

    CAS  Article  Google Scholar 

  28. Pundt A, Kirchheim R (2006) HYDROGEN IN METALS: microstructural aspects. Annu Rev Mater Res 36:555–608. https://doi.org/10.1146/annurev.matsci.36.090804.094451

    CAS  Article  Google Scholar 

  29. Qadri SB, Keller TM, Little CA, Lubitz P (2005) Structural and magnetic properties of nano-crystalline FePd alloys prepared by organo-metallic synthesis. Appl Phys A 81:587–590. https://doi.org/10.1007/s00339-004-2772-1

    CAS  Article  Google Scholar 

  30. Ravelosona D, Chappert C, Bernas H, Halley D, Samson Y, Marty A (2002) Chemical ordering at low temperatures in FePd films. J Appl Phys 91:8082. https://doi.org/10.1063/1.1452277

    CAS  Article  Google Scholar 

  31. Sato K, Kovács A, Hirotsu Y (2011) Order–disorder transformation in Fe–Pd alloy nanoparticles studied by in situ transmission electron microscopy. Thin Solid Films 519:3305–3311. https://doi.org/10.1016/j.tsf.2010.12.246

    CAS  Article  Google Scholar 

  32. Shima H, Oikawa K, Fujita A, Fukamichi K, Ishida K (2004) Magnetic anisotropy and mangnetostriction in L10 FePd alloy. J Magn Magn Mater 272–276:2173–2174. https://doi.org/10.1016/j.jmmm.2003.12.898

    CAS  Article  Google Scholar 

  33. Tanaka K, Ichitsubo T, Koiwa M (2001) Effect of external fields on ordering of FePd. Mater Sci Eng A 312:118–127. https://doi.org/10.1016/S0921-5093(00)01865-7

    Article  Google Scholar 

  34. Tokuoka Y, Seto Y, Kato T, Iwata S (2014) Effect of Ag addition to L1 0 FePt and L1 0 FePd films grown by molecular beam epitaxy. J Appl Phys 115:17B716. https://doi.org/10.1063/1.4864251

    CAS  Article  Google Scholar 

  35. Uzdin V, Labergerie D, Westerholt K, Zabel H, Hjörvarsson B (2002) Evolution of atomic magnetic moments in Fe/V multilayers with hydrogen loading. J Magn Magn Mater 240:481–484. https://doi.org/10.1016/S0304-8853(01)00907-6

    CAS  Article  Google Scholar 

  36. Vladymyrskyi IA, Karpets MV, Ganss F, Katona GL, Beke DL, Sidorenko SI, Nagata T, Nabatame T, Chikyow T, Beddies G, Albrecht M, Makogon IM (2013) Influence of the annealing atmosphere on the structural properties of FePt thin films. J Appl Phys 114:164314. https://doi.org/10.1063/1.4827202

    CAS  Article  Google Scholar 

  37. Vlasov VV, Guglya OG, Marchenko YO, Melnikova OS (2015) Absorption of hydrogen by thin films. J Usp Fiz Met 16:85–117. https://doi.org/10.15407/ufm.16.02.085

    Article  Google Scholar 

  38. Weidinger A, Nagengast D, Rehm C, Klose F, Pietzak B (1996) Metallic multilayers and hydrogen. Thin Solid Films 275:48–53. https://doi.org/10.1016/0040-6090(95)07017-6

    CAS  Article  Google Scholar 

  39. Weller D, Parker G, Mosendz O, Lyberatos A, Mitin D, Safonova NY, Albrecht M (2016) Review article: FePt heat assisted magnetic recording media. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 34:060801. https://doi.org/10.1116/1.4965980

    CAS  Article  Google Scholar 

  40. Yamauchi M, Okubo K, Tsukuda T, Kato K, Takata M, Takeda S (2014) Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques. Nanoscale 6:4067–4071. https://doi.org/10.1039/C3NR06327E

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the German Academic Exchange Service (DAAD) in the frame of Leonard Euler scholarship program (Grant IDs 57198300, 57291435).

Funding

This study was funded by German Academic Exchange Service (DAAD) (Grant IDs 57198300, 57291435).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. N. Shamis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamis, M.N., Schmidt, N.Y., Verbytska, T.I. et al. L10 phase formation in FePd thin films induced by H2 during annealing. Appl Nanosci (2021). https://doi.org/10.1007/s13204-021-01809-4

Download citation

Keywords

  • Coercivity
  • Hydrogen
  • L10 ordered phase
  • Magnetic hysteresis
  • Order–disorder phase transitions
  • Thin films