Skip to main content
Log in

Experimental nanomechanics of 2D materials for strain engineering

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The past 2 decades have witnessed the explosion of research on two-dimensional (2D) materials, where notable efforts have been made in the synthesis and design of a wide spectrum of applications. To understand their mechanical properties and responses triggered by deformation, the prerequisites for reliable applications under realistic service conditions, novel experimental methods have to be developed due to the limitations of traditional bulk mechanical testing for atomically-thin structures. Besides, the nearly-ideal 2D crystalline structures of many 2D materials endow them the great capability of deformation, showing promising potentials in “strain engineering” and “interface engineering” applications. This review summaries several representative approaches in experimental nanomechanics and corresponding progresses in the characterization of structural and mechanical properties of 2D materials, with the aim to provide insights into the instrumental design for nanomechanical tests. In addition, examples of strain-tuned material behaviors and changes in their performance are also discussed to demonstrate the significance of the nanomechanical approach for functional device design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akinwande D et al (2017) A review on mechanics and mechanical properties of 2D materials: graphene and beyond. ExtremeMech Lett 13:42–77

    Article  Google Scholar 

  • Alden JS et al (2013) Strain solitons and topological defects in bilayer graphene. Proc Natl Acad Sci 110:11256–11260

    Article  CAS  Google Scholar 

  • Amorim B et al (2016) Novel effects of strains in graphene and other two dimensional materials. Phys Rep 617:1–54

    Article  CAS  Google Scholar 

  • Androulidakis C et al (2018) Strained hexagonal boron nitride: phonon shift and Grüneisen parameter. Phys Rev B 97:241414

    Article  CAS  Google Scholar 

  • Ares P et al (2020) Piezoelectricity in monolayer hexagonal boron nitride. Adv Mater 32:1905504

    Article  CAS  Google Scholar 

  • Azcatl A et al (2016) Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett 16:5437–5443

    Article  CAS  Google Scholar 

  • Azizi A et al (2014) Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat Commun 5:1–7

    Article  Google Scholar 

  • Begley MR, Mackin TJ (2004) Spherical indentation of freestanding circular thin films in the membrane regime. J Mech Phys Solids 52:2005–2023

    Article  CAS  Google Scholar 

  • Berman D et al (2018) Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12:2122–2137

    Article  CAS  Google Scholar 

  • Bertolazzi S et al (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9709

    Article  CAS  Google Scholar 

  • Bhatia NM, Nachbar W (1968) Finite indentation of an elastic membrane by a spherical indenter. Int J Non-Linear Mech 3:307–324

    Article  Google Scholar 

  • Bhowmick S et al (2019) Advanced microelectromechanical systems-based nanomechanical testing: beyond stress and strain measurements. MRS Bull 44:487–493

    Article  Google Scholar 

  • Branny A et al (2017) Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun 8:1–7

    Article  Google Scholar 

  • Brennan CJ et al (2015) Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv Mater Interfaces 2:1500176

    Article  Google Scholar 

  • Bunch JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    Article  CAS  Google Scholar 

  • Cadelano E et al (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502

    Article  Google Scholar 

  • Cao G, Gao H (2019) Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog Mater Sci 103:558–595

    Article  CAS  Google Scholar 

  • Cao C et al (2015) Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture. Nano Lett 15:6528–6534

    Article  CAS  Google Scholar 

  • Cao C et al (2016) In situ TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device. Nanotechnology 27:28LT01

    Article  Google Scholar 

  • Cao Y et al (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556:43

    Article  CAS  Google Scholar 

  • Cao K et al (2020) Elastic straining of free-standing monolayer graphene. Nat Commun 11:284

    Article  CAS  Google Scholar 

  • Castellanos-Gomez A et al (2012a) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24:772–775

    Article  CAS  Google Scholar 

  • Castellanos-Gomez A et al (2012b) Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Res 5:550–557

    Article  CAS  Google Scholar 

  • Castellanos-Gomez A et al (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366

    Article  CAS  Google Scholar 

  • Chen J et al (2013) Nanomechanical properties of graphene on poly (ethylene terephthalate) substrate. Carbon 55:144–150

    Article  CAS  Google Scholar 

  • Conley HJ et al (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626–3630

    Article  CAS  Google Scholar 

  • Cooper RC et al (2013) Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys Rev B 87:035423

    Article  Google Scholar 

  • Cui T et al (2020) Fatigue of graphene. Nat Mater 19:405–411

    Article  CAS  Google Scholar 

  • Czichos H et al (2006) Springer handbook of materials measurement methods. Springer, Berlin

    Book  Google Scholar 

  • Dai S et al (2016a) Twisted bilayer graphene: Moiré with a twist. Nano Lett 16:5923–5927

    Article  CAS  Google Scholar 

  • Dai Z et al (2016b) Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Compos Sci Technol 136:1–9

    Article  CAS  Google Scholar 

  • Dai Z et al (2019) Strain engineering of 2D materials: issues and opportunities at the interface. Adv Mater 31:1805417

    Article  CAS  Google Scholar 

  • Defo RK et al (2016) Strain dependence of band gaps and exciton energies in pure and mixed transition-metal dichalcogenides. Phys Rev B 94:155310

    Article  Google Scholar 

  • Desai SB et al (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14:4592–4597

    Article  CAS  Google Scholar 

  • Duerloo KAN et al (2012) Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 3:2871–2876

    Article  CAS  Google Scholar 

  • Duerloo K-AN et al (2014) Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun 5:1–9

    Article  Google Scholar 

  • Edelberg D et al (2020) Tunable strain soliton networks confine electrons in van der Waals materials. Nat Phys 16:1097–1102

    Article  CAS  Google Scholar 

  • Espinosa HD (2008) In-situ electron microscopy testing of 1-D nanostructures, ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, Washington, pp 551–552

    Google Scholar 

  • Falin A et al (2017) Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8:15815

    Article  CAS  Google Scholar 

  • Fei R, Yang L (2014) Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14:2884–2889

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Georgiou T et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103

    Article  CAS  Google Scholar 

  • Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  Google Scholar 

  • Gong L et al (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697

    Article  CAS  Google Scholar 

  • Gupta A et al (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  • Han X et al (2014) Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett 14:4607–4614

    Article  CAS  Google Scholar 

  • Han J et al (2015) Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale 7:15672–15679

    Article  CAS  Google Scholar 

  • Han Y et al (2020) Large elastic deformation and defect tolerance of hexagonal boron nitride monolayers. Cell Rept Phys Sci 1:100172

    Article  Google Scholar 

  • Haque MA et al (2010) MEMS for in situ testing: Handling, actuation, loading, and displacement measurements. MRS Bull 35:375–381

    Article  Google Scholar 

  • He K et al (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13:2931–2936

    Article  CAS  Google Scholar 

  • Hencky H (1915) Uber den Spannungszustand in kreisrunden Platten mit verschwindender Biegungssteifigkeit. Z Math Phys 63:311–317

    Google Scholar 

  • Hod O et al (2018) Structural superlubricity and ultralow friction across the length scales. Nature 563:485–492

    Article  CAS  Google Scholar 

  • Hou W et al (2019) Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat Nanotechnol 14:668–673

    Article  CAS  Google Scholar 

  • Hui YY et al (2013) Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7:7126–7131

    Article  CAS  Google Scholar 

  • Island JO et al (2016) Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8:2589–2593

    Article  CAS  Google Scholar 

  • Jang B et al (2017) Uniaxial fracture test of freestanding pristine graphene using in situ tensile tester under scanning electron microscope. Extreme Mech Lett 14:10–15

    Article  Google Scholar 

  • Jiang T et al (2014) Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv Funct Mater 24:396–402

    Article  CAS  Google Scholar 

  • Jiang L et al (2016) Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat Mater 15:840–844

    Article  CAS  Google Scholar 

  • Jiang L et al (2018) Manipulation of domain-wall solitons in bi-and trilayer graphene. Nat Nanotechnol 13:204–208

    Article  CAS  Google Scholar 

  • Ju L et al (2015) Topological valley transport at bilayer graphene domain walls. Nature 520:650–655

    Article  CAS  Google Scholar 

  • Jung GS et al (2018) Interlocking friction governs the mechanical fracture of bilayer MoS2. ACS Nano 12:3600–3608

    Article  CAS  Google Scholar 

  • Kim NY et al (2017) Evidence of local commensurate state with lattice match of graphene on hexagonal boron nitride. ACS Nano 11:7084–7090

    Article  CAS  Google Scholar 

  • Kitt AL et al (2013) How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Lett 13:2605–2610

    Article  CAS  Google Scholar 

  • Klimov NN et al (2012) Electromechanical properties of graphene drumheads. Science 336:1557–1561

    Article  CAS  Google Scholar 

  • Koenig SP et al (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543

    Article  CAS  Google Scholar 

  • Komaragiri U et al (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72:203–212

    Article  Google Scholar 

  • Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  • Lee JU et al (2012) Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett 12:4444–4448

    Article  CAS  Google Scholar 

  • Lee GH et al (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340:1073–1076

    Article  CAS  Google Scholar 

  • Levy N et al (2010) Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329:544–547

    Article  CAS  Google Scholar 

  • Li L et al (2014a) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  • Li J et al (2014b) Elastic strain engineering for unprecedented materials properties. MRS Bull 39:108–114

    Article  Google Scholar 

  • Li Y et al (2014c) Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J Phys Chem C 118:23970–23976

    Article  CAS  Google Scholar 

  • Li H et al (2015) Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat Commun 6:7381

    Article  CAS  Google Scholar 

  • Lin YC et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368

    Article  CAS  Google Scholar 

  • Lin QY et al (2013) Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano 7:1171–1177

    Article  CAS  Google Scholar 

  • Lindahl N et al (2012) Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett 12:3526–3531

    Article  CAS  Google Scholar 

  • Liu Y et al (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60:591–605

    Article  CAS  Google Scholar 

  • Liu K et al (2014) Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett 14:5097–5103

    Article  CAS  Google Scholar 

  • Lloyd D et al (2016) Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett 16:5836–5841

    Article  CAS  Google Scholar 

  • Lloyd D et al (2017) Adhesion, stiffness, and instability in atomically thin MoS2 bubbles. Nano Lett 17:5329–5334

    Article  CAS  Google Scholar 

  • López Polín G et al (2015) Increasing the elastic modulus of graphene by controlled defect creation. Nat Phys 11:26–31

    Article  Google Scholar 

  • Ly TH et al (2017) Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nat Commun 8:14116

    Article  CAS  Google Scholar 

  • Manasevit H et al (1982) Electron mobility enhancement in epitaxial multilayer Si-Si1-xGex alloy films on (100) Si. Appl Phys Lett 41:464–466

    Article  CAS  Google Scholar 

  • Manzeli S et al (2015) Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett 15:5330–5335

    Article  CAS  Google Scholar 

  • Mishchenko A et al (2014) Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat Nanotechnol 9:808–813

    Article  CAS  Google Scholar 

  • Mohiuddin T et al (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B 79:205433

    Article  Google Scholar 

  • Nayak PK et al (2017) Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11:4041–4050

    Article  CAS  Google Scholar 

  • Nemes-Incze P et al (2017) Preparing local strain patterns in graphene by atomic force microscope based indentation. Sci Rep 7:3035

    Article  Google Scholar 

  • Ni ZH et al (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305

    Article  CAS  Google Scholar 

  • Ni GX et al (2014) Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv Mater 26:1081–1086

    Article  CAS  Google Scholar 

  • Niu T et al (2018) Indentation behavior of the stiffest membrane mounted on a very compliant substrate: Graphene on PDMS. Int J Solids Struct 132:1–8

    Article  Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453

    Article  CAS  Google Scholar 

  • Novoselov K et al (2016a) 2D materials and van der Waals heterostructures. Science 353:9439

    Article  Google Scholar 

  • Novoselov KS et al (2016b) 2D materials and van der Waals heterostructures. Science 353:aac9439

    Article  CAS  Google Scholar 

  • Oh Y et al (2013) Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer, US Patents US8789425B2.

  • Oostinga JB et al (2008) Gate-induced insulating state in bilayer graphene devices. Nat Mater 7:151–157

    Article  CAS  Google Scholar 

  • Pak S et al (2017) Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett 17:5634–5640

    Article  CAS  Google Scholar 

  • Palacios-Berraquero C et al (2017) Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun 8:1–6

    Article  Google Scholar 

  • Peng P et al (2015) Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl Mater Interfaces 7:12597–12618

    Article  CAS  Google Scholar 

  • Pereira VM, Neto AC (2009) Strain engineering of graphene’s electronic structure. Phys Rev Lett 103:046801

    Article  Google Scholar 

  • Pérez Garza HH et al (2014) Controlled, reversible, and nondestructive generation of uniaxial extreme strains (> 10%) in graphene. Nano Lett 14:4107–4113

    Article  Google Scholar 

  • Pierucci D et al (2017) Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano 11:1755–1761

    Article  CAS  Google Scholar 

  • Plechinger G et al (2015) Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater 2:015006

    Article  Google Scholar 

  • Pruessner MW et al (2003) Mechanical property measurement of InP-based MEMS for optical communications. Sens Actuator A 105:190–200

    Article  CAS  Google Scholar 

  • Qi J et al (2012) Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett 12:1224–1228

    Article  CAS  Google Scholar 

  • Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147

    Article  CAS  Google Scholar 

  • Reina A et al (2008) Transferring and identification of single-and few-layer graphene on arbitrary substrates. J Phys Chem C 112:17741–17744

    Article  CAS  Google Scholar 

  • Reserbat-Plantey A et al (2014) Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett 14:5044–5051

    Article  CAS  Google Scholar 

  • Rice C et al (2013) Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys Rev B 87:081307

    Article  Google Scholar 

  • Rodin A et al (2014) Strain-induced gap modification in black phosphorus. Phys Rev Lett 112:176801

    Article  CAS  Google Scholar 

  • Rostami H et al (2018) Piezoelectricity and valley Chern number in inhomogeneous hexagonal 2D crystals, NPJ 2D. Mater Appl 2:15

    Google Scholar 

  • Ruiz Vargas CS et al (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11:2259–2263

    Article  CAS  Google Scholar 

  • Schweizer P et al (2018) In situ manipulation and switching of dislocations in bilayer graphene. Sci Adv 4:eaat4712

    Article  CAS  Google Scholar 

  • Senturia SD (2007) Microsystem design. Springer Science and Business Media, Berlin

    Google Scholar 

  • Shin BG et al (2016) Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain. Adv Mater 28:9378–9384

    Article  CAS  Google Scholar 

  • Song L et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  Google Scholar 

  • Song Z et al (2015) Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano 9:401–408

    Article  CAS  Google Scholar 

  • Tao J et al (2015) Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9:11362–11370

    Article  CAS  Google Scholar 

  • Tran K et al (2019) Evidence for moiré excitons in van der Waals heterostructures. Nature 567:71–75

    Article  CAS  Google Scholar 

  • Tsoukleri G et al (2009) Subjecting a graphene monolayer to tension and compression. Small 5:2397–2402

    Article  CAS  Google Scholar 

  • Vaezi A et al (2013) Topological edge states at a tilt boundary in gated multilayer graphene. Phys Rev X 3:021018

    Google Scholar 

  • Wang QH et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  • Wang Y et al (2013a) Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9:2857–2861

    Article  CAS  Google Scholar 

  • Wang P et al (2013b) Numerical analysis of circular graphene bubbles. J Appl Mech 80:040905

    Article  Google Scholar 

  • Wang Y et al (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res 8:2562–2572

    Article  CAS  Google Scholar 

  • Wang JY et al (2016a) Elastic properties of suspended black phosphorus nanosheets. Appl Phys Lett 108:013104

    Article  Google Scholar 

  • Wang F et al (2016b) Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2D Mater 4:015007

    Article  Google Scholar 

  • Wang G et al (2017) Measuring interlayer shear stress in bilayer graphene. Phys Rev Lett 119:036101

    Article  Google Scholar 

  • Wang G et al (2019) Bending of multilayer van der waals materials. Phys Rev Lett 123:116101

    Article  CAS  Google Scholar 

  • Watanabe K et al (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404

    Article  CAS  Google Scholar 

  • Wei X, Kysar JW (2012) Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int J Solids Struct 49:3201–3209

    Article  CAS  Google Scholar 

  • Wei X et al (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407

    Article  Google Scholar 

  • Wei N et al (2011) Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22:105705

    Article  Google Scholar 

  • Wei X et al (2015) Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett 15:689–694

    Article  CAS  Google Scholar 

  • Williams J (1997) Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int J Fract 87:265–288

    Article  Google Scholar 

  • Wu W et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474

    Article  CAS  Google Scholar 

  • Xiong S, Cao G (2017) Continuum thin-shell model of the anisotropic two-dimensional materials: single-layer black phosphorus. Extreme Mech Lett 15:1–9

    Article  Google Scholar 

  • Xu Z, Zheng Q (2018) Micro-and nano-mechanics in China: a brief review of recent progress and perspectives. Sci China Phys Mech Astron 61:74601

    Article  Google Scholar 

  • Xu C et al (2015) An experimental investigation on the tangential interfacial properties of graphene: size effect. Mater Lett 161:755–758

    Article  CAS  Google Scholar 

  • Xu C et al (2019) Rate-dependent decohesion modes in graphene-sandwiched interfaces. Adv Mater Interfaces 6:1901217

    Article  CAS  Google Scholar 

  • Yang S et al (2015) Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett 15:1660–1666

    Article  CAS  Google Scholar 

  • Yang Y et al (2017a) Brittle fracture of 2D MoSe2. Adv Mater 29:1604201

    Article  Google Scholar 

  • Yang R et al (2017b) Tuning optical signatures of single-and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett 17:4568–4575

    Article  CAS  Google Scholar 

  • Zandiatashbar A et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186

    Article  Google Scholar 

  • Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469

    Article  CAS  Google Scholar 

  • Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5

    Article  Google Scholar 

  • Zhang JL, Shan GC (2019) Stacking control in graphene-based materials: A promising method for fascinating physical properties. Front Phys 14:23301

    Article  Google Scholar 

  • Zhang P et al (2014) Fracture toughness of graphene. Nat Commun 5:3782

    Article  CAS  Google Scholar 

  • Zhang R et al (2016a) Elastic properties of suspended multilayer WSe2. Appl Phys Lett 108:042104

    Article  Google Scholar 

  • Zhang H et al (2016b) Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv 2:e1501382

    Article  Google Scholar 

  • Zhang Q et al (2016c) Strain relaxation of monolayer WS2 on plastic substrate. Adv Funct Mater 26:8707–8714

    Article  CAS  Google Scholar 

  • Zhao J et al (2015) Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nat Commun 6:8935

    Article  CAS  Google Scholar 

  • Zhu Y, Chang TH (2015) A review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microengr 25:093001

    Article  Google Scholar 

  • Zhu T, Li J (2010) Ultra-strength materials. Prog Mater Sci 55:710–757

    Article  Google Scholar 

  • Zhu C et al (2013) Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B 88:121301

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial supports from Hong Kong Research Grant Council (RGC) under the GRF CityU11216515 and CityU11207416, City University of Hong Kong under SRG 7005070, and National Natural Science Foundation of China (NSFC) through Grants No. 11825203 and No. 11922215.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Xu or Yang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhou, J., Wang, H. et al. Experimental nanomechanics of 2D materials for strain engineering. Appl Nanosci 11, 1075–1091 (2021). https://doi.org/10.1007/s13204-021-01702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01702-0

Keywords

Navigation