Skip to main content
Log in

Atomic force microscopy imaging of the G-banding process of chromosomes

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The chromosome is an important genetic material carrier in living individuals and the spatial conformation (mainly referring to the chromosomal structure, quantity, centromere position and other morphological information) may be abnormal or mutated. Thus, it may generate a high possibility to cause diseases. Generally, the karyotype of chromosome G-bands is detected and analyzed using an optical microscope. However, it is difficult to detect the G-band structures for traditional optical microscopes on the nanometer scale. Herein, we have studied the detection method of chromosome G-band samples by atomic force microscopy (AFM) imaging. The structures of chromosome G-banding are studied with different trypsin treatment durations. The experiment result shows that the treatment duration of 20 s is the best time to form G-band structures. The AFM images show the structures of chromosome G-bands which cannot be observed under an optical microscope. This work provides a new way for the detection and diagnosis of chromosome diseases on the nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Argüello-Miranda O, Sáenz-Arce G (2008) Interchromatidal central ridge and transversal symmetry in early metaphasic human chromosome one. J Mol Recogn Interdiscip J 21(3):184–189

    Article  Google Scholar 

  • Arora T, Dhir R (2019) A novel approach for segmentation of human metaphase chromosome images using region based active contours. Int Arab J Inf Technol 16(1):132–137

    Google Scholar 

  • Benn P (2008) Delach J (2008) Human lymphocyte culture and chromosome analysis. Cold Spring Harb Protoc 10:pdb. prot5035

    Google Scholar 

  • Cai N, Hu K, Xiong H et al (2004) Image segmentation of G bands of triticum monococcum chromosomes based on the model-based neural network. Pattern Recogn Lett 25(3):319–329

    Article  Google Scholar 

  • Cai HH, Zeng X, Tang X et al (2018) Atomic force microscopy: a nanoscopic application in molecular and cell biology. At Force Microsc Mol Cell Biol 5:77–103

    Article  Google Scholar 

  • Daban JR (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42(8):733–750

    Article  CAS  Google Scholar 

  • Di Bucchianico S, Poma AM, Giardi MF et al (2011) Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes. J Nanobiotechnol 9(1):1–7

    Article  Google Scholar 

  • Fotiadis D, Scheuring S, Müller SA et al (2002) Imaging and manipulation of biological structures with the AFM. Micron 33(4):385–397

    Article  CAS  Google Scholar 

  • Hoshi O, Ushiki T (2001) Three-dimensional structure of G-banded human metaphase chromosomes observed by atomic force microscopy. Arch Histol Cytol 64(5):475–482

    Article  CAS  Google Scholar 

  • Howe B, Umrigar A, Tsien F (2014) Chromosome preparation from cultured cells. J Vis Exp 83:e50203

    Google Scholar 

  • Klausen LH, Fuhs T, Dong M (2016) Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun 7(1):1–10

    Article  Google Scholar 

  • Koleva VP, Dragoeva AP, Andreeva AI et al (2013) Comparative analysis of clastogen-induced chromosome aberrations observed with light microscopy and by means of atomic force microscopy. Mutat Res Genet Toxicol Environ Mutagen 753(1):29–35

    Article  CAS  Google Scholar 

  • Li F, Ma L, Liu B et al (2015) A new method of extracting the altitude curves along chromosomes based on contour line. International conference on manipulation. IEEE 98–102

  • Liang C, Hu Y, Wang H et al (2016) Biomimetic cardiovascular stents for in vivo re-endothelialization. Biomaterials 103:170–182

    Article  CAS  Google Scholar 

  • McMaster TJ, Winfield MO, Baker AA et al (1996) Chromosome classification by atomic force microscopy volume measurement. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 14(2):1438–1443

    Article  CAS  Google Scholar 

  • Musio A, Sbrana I, Mariani T et al (1997) Atomic force microscope imaging of chromosome structure during G-banding treatments. Genome 40(1):127–131

    Article  CAS  Google Scholar 

  • Panagopoulos I, Gorunova L et al (2018) RUNX1-PDCD6 fusion resulting from a novel t(5;21)(p15;q22) chromosome translocation in myelodysplastic syndrome secondary to chronic lymphocytic leukemia. PLoS ONE 13(4):e0196181

    Article  Google Scholar 

  • Peterson JF, Pitel BA, Smoley SA et al (2019) Constitutional chromosome rearrangements that mimic the 2017 world health organization “acute myeloid leukemia with recurrent genetic abnormalities”: a study of three cases and review of the literature. Cancer Genet 230:37–46

    Article  Google Scholar 

  • Pisano S, Gilson E (2019) Analysis of DNA–protein complexes by atomic force microscopy imaging: the case of TRF2–telomeric DNA wrapping. Atomic Force Microscopy. Humana Press, New York, pp 75–97

    Google Scholar 

  • Qu S, Chen Y, Ge S et al (2004) Study of chromosome translocation in victims of a previous radiation accident by atomic force microscopy. Chin J Radiol Med Prot 24(4):353–356

    Google Scholar 

  • Şahin FI, Ergün MA, Tan E et al (2000) The mechanism of G-banding detected by atomic force microscopy. Scanning 22(1):24–27

    Article  Google Scholar 

  • Stumme-Diers MP, Stormberg T, Sun Z et al (2019) Probing the structure and dynamics of nucleosomes using atomic force microscopy imaging. J Vis Exp 143:e58820

    Google Scholar 

  • Tsukamoto K, Kuwazaki S, Yamamoto K et al (2006) Dissection and high-yield recovery of nanometre-scale chromosome fragments using an atomic-force microscope. Nanotechnology 17(5):1391–1396

    Article  CAS  Google Scholar 

  • Ushiki T, Shigeno M, Hoshi O (2008) Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy. Nanotechnology 19(38):384022

    Article  Google Scholar 

  • Wolffe AP, Guschin D (2000) Chromatin structural features and targets that regulate transcription. J Struct Biol 129(2–3):102–122

    Article  CAS  Google Scholar 

  • Wu Y, Cai J, Cheng L et al (2006a) Chromosome imaging by atomic force microscopy: influencing factors and comparative evaluation. J Genet 85(2):141–145

    Article  Google Scholar 

  • Wu Y, Cai J, Cheng L et al (2006b) Atomic force microscopic examination of chromosomes treated with trypsin or ethidium bromide. Chem Pharm Bull 54(4):501–505

    Article  CAS  Google Scholar 

  • Würtz M, Aumiller D, Gundelwein L et al (2019) DNA accessibility of chromatosomes quantified by automated image analysis of AFM data. Scientific Reports 9(1):1–12

    Article  Google Scholar 

  • Xu S, Dong M, Liu X et al (2007) Direct force measurements between siRNA and chitosan molecules using force spectroscopy. Biophys J 93(3):952–959

    Article  CAS  Google Scholar 

  • Yan Y, Geng Y, Hu Z et al (2014) Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method. Nanoscale Res Lett 9(1):212

    Article  Google Scholar 

  • Yan Y, Geng Y, Hu Z (2015) Recent advances in AFM tip-based nanomechanical machining. Int J Mach Tools Manuf Des Res Appl 99:1–18

    Article  Google Scholar 

  • Yang G, Leuba SS, Bustamante CJ et al (1995) Scanning force microscopy study of native and linker histone-depleted chromatin fibers. Scanning Probe Microscopies III. Int Soc Opt Photon 2384:13–21

    CAS  Google Scholar 

  • Yilmaz IC, Yang J, Altinsoy E et al (2018) An improved segmentation for raw G-band chromosome images. IEEE 2018 5th international conference on systems and informatics 944–950

  • Zhang X, Zhang Y, Zhong G (2014) Influence of ionizing radiation on micronucleus, chromosome aberration and leukocyte among radiation workers. Occup Health 13:1724

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 172017YFE0112100), EU H2020 Program (MNR4SCell No.734174), Jilin Provincial Science and Technology Program (Nos.20180414002GH, 20180414081GH, 20180520203JH, 20190702002GH and 20200901011SF), and “111” Project of China (D17017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuobin Wang or Huimiao Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, J., Dong, J. et al. Atomic force microscopy imaging of the G-banding process of chromosomes. Appl Nanosci 11, 249–255 (2021). https://doi.org/10.1007/s13204-020-01584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01584-8

Keywords

Navigation