Skip to main content
Log in

Engineering of metallic nanorod-based hyperbolic metamaterials for broadband applications operating in the infrared regime

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Metamaterials are manmade structures that have attained considerable attention over the past 2 decades in the modern fields like cloaking, sensing, and imaging owing to their ability to harness electromagnetic fields. In this regard, we have inspected the dielectric properties of the hyperbolic metamaterials (HMM) made of metallic nanorods and dielectric medium at the infrared wavelength regime. The periodically arranged subwavelength-sized metallic nanorods embedded in the silicon dioxide (\(\text{SiO}_2\)) substrate glass. The spacing between two adjacent nanorods is of subwavelength in size. Furthermore, effective permittivity of the metamaterial has been analyzed by employing the Maxwell Garnett effective medium theory. Moreover, different metallic nanorod inclusions (Au, W, Pt and Ti) were taken into account. Hyperbolic features of the metamaterial have been observed, and it is noticed that hyperbolic features merely depend on the type of metallic nanorods and their size. The observations reveal that the dielectric properties of the metamaterial can be tuned by altering the radii of the metallic nanorod. Apart from dispersion, reflection, transmission and absorption features of the HMM are taken into account. It is noticed that reflection, transmission and absorption of the HMM depend on the type of metallic nanorod and its dimension. Such HMMs structures with exotic dielectric features would be useful for sensing, filtering, and absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbas F, Lakhtakia A, Naqvi QA, Faryad M (2015) An optical-sensing modality that exploits Dyakonov–Tamm waves. Photonics Res 3(1):5–8

    Google Scholar 

  • Attar A, Joodaki M (2016) A wide differential passband filter with common-mode suppression property based on left handed metamaterial transmission line. in: 2016 International symposium on electromagnetic compatibility-EMC Europe. IEEE, New York, pp 581–585

  • Bakır M, Karaaslan M, Unal E, Akgol O, Sabah C (2017) Microwave metamaterial absorber for sensing applications. Opto Electron Rev 25(4):318–325

    Google Scholar 

  • Baqir M, Choudhury P (2017) Hyperbolic metamaterial-based UV absorber. IEEE PTL 29(18):1548–1551

    CAS  Google Scholar 

  • Baqir M, Choudhury PK (2018) Toward filtering aspects of silver nanowire-based hyperbolic metamaterial. Plasmonics 13(6):2015–2020

    CAS  Google Scholar 

  • Baqir M, Choudhury P (2019) On the VO\(_2\) metasurface-based temperature sensor. JOSA B 36(8):F123–F130

    CAS  Google Scholar 

  • Baqir M, Farmani A, Fatima T, Raza M, Shaukat S, Mir A (2018a) Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt 57(31):9447–9454

    CAS  Google Scholar 

  • Baqir M, Choudhury PK, Mughal M (2018b) Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes. Plasmonics 14:1–8

    Google Scholar 

  • Baqir M, Choudhury P, Fatima T, Ibrahim A-B (2019) Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime. Optik 180:832–839

    CAS  Google Scholar 

  • Bashiri S, Fasihi K (2019) An all-optical \(1\times 2\) demultiplexer using Kerr nonlinear nano-plasmonic switches. Plasmonics 15:449–456

    Google Scholar 

  • Dai S, Ma Q, Liu M, Andersen T, Fei Z, Goldflam M, Wagner M, Watanabe K, Taniguchi T, Thiemens M et al (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10(8):682

    CAS  Google Scholar 

  • Entezari M, Zavvari M (2016) Application of hyperbolic metamaterials for responsivity enhancement of thin film photo-conductive detectors. IEEE Sens J 16(24):8916–8920

    CAS  Google Scholar 

  • Faraji M, Moravvej-Farshi MK, Yousefi L (2015) Tunable THz perfect absorber using graphene-based metamaterials. Opt Commun 355:352–355

    CAS  Google Scholar 

  • Farmani A, Miri M, Sheikhi MH (2017a) Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B 34(6):1097–1106

    CAS  Google Scholar 

  • Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017b) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct 112:404–414

    CAS  Google Scholar 

  • Feng H, Wang M, Jiao L, Xu Z, Li X, Xia F, Zhang K, Kong W, Dong L, Yun M (2020) Phase-coupled plasmon-induced transparency in metasurface with periodically arranged bimolecular systems. Appl Surf Sci 506:144888

    CAS  Google Scholar 

  • Ferrari L, Wu C, Lepage D, Zhang X, Liu Z (2015) Hyperbolic metamaterials and their applications. Prog Quantum Electron 40:1–40

    Google Scholar 

  • Fesenko VI, Tuz VR (2019) Lossless and loss-induced topological transitions of isofrequency surfaces in a biaxial gyroelectromagnetic medium. Phys Rev B 99(9):094404

    Google Scholar 

  • Hamidi J, Zavvari M (2018) Strong coupling of metamaterial resonances to intersubband transitions of quantum dots for enhanced second-harmonic generation. Appl Opt 57(36):10505–10509

    CAS  Google Scholar 

  • Hamzavi-Zarghani Z, Yahaghi A, Matekovits L, Farmani A (2019) Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Opt Express 27(24):34824–34837

    CAS  Google Scholar 

  • Han G, Bai R, Jin X, Zhang Y, An C, Lee Y (2018) Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators. Materials 11(12):2353

    Google Scholar 

  • Kadic M, Bückmann T, Schittny R, Wegener M (2013) Metamaterials beyond electromagnetism. Rep Prog Phys 76(12):126501

    Google Scholar 

  • Kondori H, Mansouri-Birjandi MA, Tavakoli S (2011) Improvement of microstrip antenna characteristics using MNG metamaterial. Int J Commun Antenna Propag (IRECAP) 1(5):446–449

    Google Scholar 

  • Kumar V, Sinha A, Singh B, Sinha A, Jha V (2015) Refractive index and electronic polarizability of ternary chalcopyrite semiconductors. Chin Phys Lett 32(12):127701

    Google Scholar 

  • Kumar V, Sinha A, Singh B, Chandra S (2016) Second-order nonlinear optical susceptibilities of AIIBVI and AIIIBV semiconductors. Phys Lett A 380(43):3630–3633

    CAS  Google Scholar 

  • Kupriiannov A, Domina K, Khardikov V, Evlyukhin A, Tuz V (2020) Homogeneous enhancement of near-fields in all-dielectric metasurfaces with cluster-based unit cells. Opt Lett 45(6):1527–1530

    CAS  Google Scholar 

  • Lemoult F, Kaina N, Fink M, Lerosey G (2013) Wave propagation control at the deep subwavelength scale in metamaterials. Nat Phys 9(1):55

    CAS  Google Scholar 

  • Li W-Y, Zhai X, Shang X-J, Xia S-X, Qin M, Wang L-L (2017) Multi-spectral plasmon induced transparency based on three-dimensional metamaterials. Opt Mater Express 7(12):4269–4276

    CAS  Google Scholar 

  • Li W, Su Y, Zhai X, Shang X, Xia S, Wang L (2018) High-\(q\) multiple Fano resonances sensor in single dark mode metamaterial waveguide structure. IEEE Photonics Technol Lett 30(23):2068–2071

    CAS  Google Scholar 

  • Li J, Zhao C, Liu B, You C, Chu F, Tian N, Chen Y, Li S, An B, Cui A et al (2019) Metamaterial grating-integrated graphene photodetector with broadband high responsivity. Appl Surf Sci 473:633–640

    CAS  Google Scholar 

  • Li Y, Zhai X, Xia S-X, Li H, Wang L-L (2020) Active control of narrowband total absorption based on terahertz hybrid dirac semimetal-graphene metamaterials. J Phys D Appl Phys 53:205106

    CAS  Google Scholar 

  • Ling X, Zhou X, Yi X, Shu W, Liu Y, Chen S, Luo H, Wen S, Fan D (2015) Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl 4(5):e290–e290

    Google Scholar 

  • Liu YM, Yu L, Jin XR, Zhang YQ, Lee Y (2019) Highly-dispersive unidirectional reflectionless phenomenon based on high-order plasmon resonance in metamaterials. Opt Express 27(21):30589–30596

    CAS  Google Scholar 

  • Naqvi S, Baqir M (2018) Ultra-wideband symmetric g-shape metamaterial-based microwave absorber. J Electromagn Waves Appl 32(16):2078–2085

    Google Scholar 

  • Nouri N, Zavvari M (2016) Second-harmonic generation in III-nitride quantum wells enhanced by metamaterials. IEEE Photonics Technol Lett 28(20):2199–2202

    CAS  Google Scholar 

  • Nurmohammadi T, Abbasian K, Yadipour R (2018) Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt Quantum Electron 50(4):188

    Google Scholar 

  • Park S, Hong J, Choi S, Kim H, Park W, Han S, Park J, Lee S, Kim D, Ahn Y (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988

    CAS  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    CAS  Google Scholar 

  • Politano GG, Cazzanelli E, Versace C, Vena C, De Santo MP, Castriota M, Ciuchi F, Bartolino R (2018) Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications. Appl Surf Sci 427:927–933

    CAS  Google Scholar 

  • Qin M, Xia S, Zhai X, Huang Y, Wang L, Liao L (2018) Surface enhanced perfect absorption in metamaterials with periodic dielectric nanostrips on silver film. Opt Express 26(23):30873–30881

    CAS  Google Scholar 

  • Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quantum Electron 52(3):1–19

    Google Scholar 

  • Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Google Scholar 

  • Rhee J, Yoo Y, Kim K, Kim Y, Lee Y (2014) Metamaterial-based perfect absorbers. J Electromagn Waves Appl 28(13):1541–1580

    Google Scholar 

  • Rupin M, Lemoult F, Lerosey G, Roux P (2014) Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Phys Rev Lett 112(23):234301

    Google Scholar 

  • Rybin O, Abbas T, Raza M, Nawaz T (2008) An improved broadband method for the evaluation of effective parameters of slab metamaterials. AEU Int J Electron Commun 62(10):762–767

    Google Scholar 

  • Sabet RA, Khoshsima H, Namdar A, Ahmadi V (2015) Retrieval of the effective quadratic and cubic susceptibilities in metamaterials. J Mod Opt 62(1):11–15

    CAS  Google Scholar 

  • Saha B, Naik GV, Saber S, Akatay C, Stach EA, Shalaev VM, Boltasseva A, Sands TD (2014) TiN/(Al, Sc)N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range. Phys Rev B 90(12):125420

    Google Scholar 

  • Shekhar P, Pendharker S, Vick D, Malac M, Jacob Z (2019) Fast electrons interacting with a natural hyperbolic medium: bismuth telluride. Opt Express 27(5):6970–6975

    CAS  Google Scholar 

  • Tuz VR, Fedorin IV, Fesenko VI (2017) Bi-hyperbolic isofrequency surface in a magnetic-semiconductor superlattice. Opt Lett 42(21):4561–4564

    CAS  Google Scholar 

  • Vahed H, Ahmadi SS (2020) Hybrid plasmonic optical modulator based on multi-layer graphene. Opt Quantum Electron 52(1):2

    Google Scholar 

  • Vahedpour R, Zavvari M (2017) Excitation of higher order modes in total transmission by zero index metamaterials with embedded defects. Opt Commun 403:170–174

    CAS  Google Scholar 

  • Wang X, Liu G, Xia S, Meng H, Shang X, He P, Zhai X (2018) Dynamically tunable Fano resonance based on graphene metamaterials. IEEE Photonics Technol Lett 30(24):2147–2150

    CAS  Google Scholar 

  • Waseer WI, Naqvi QA, Mughal MJ (2019) Non-uniform plane waves (ghost waves) in general anisotropic medium. Opt Commun 453:124334

    CAS  Google Scholar 

  • Wu S, Yachin VV, Shcherbinin VI, Tuz VR (2019) Chiral metasurfaces formed by 3d-printed square helices: a flexible tool to manipulate wave polarization. J Appl Phys 126(10):103101

    Google Scholar 

  • Zarghooni B, Denidni TA (2014) New fractal metamaterial unit-cell for microwave applications. In: 8th European conference on antennas and propagation (EuCAP), 2014. IEEE, New York, pp 978–979

Download references

Acknowledgements

This work was partially supported by the Higher Education Commission Pakistan (HEC) under [grant number 7922/Balochistan/NRPU/R&D/HEC/2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baqir.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqir, M.A., Farmani, A., Raza, M. et al. Engineering of metallic nanorod-based hyperbolic metamaterials for broadband applications operating in the infrared regime. Appl Nanosci 11, 229–240 (2021). https://doi.org/10.1007/s13204-020-01574-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01574-w

Keywords

Navigation