Skip to main content
Log in

Surface thermal investigation in water functionalized Al2O3 and γAl2O3 nanomaterials-based nanofluid over a sensor surface

Applied Nanoscience Aims and scope Submit manuscript

Abstract

Thermal transport investigation in Al2O3–H2O and Al2O3–H2O over sensor surface is significant from medical sciences, biological, and chemical engineering. Therefore, the analysis is conducted to investigate the thermal transport against the preeminent parameters. The nanofluid models are transformed in self-similar version via similarity transformations and then treated numerically. It is perceived that the velocity drops against higher values of ϕ. The thermal behavior of the nanofluids enhances for multiple permeable parameter and volume fraction. It is also perceived that thermal performance in γAl2O3–H2O prevailed throughout the analysis. Therefore, these nanofluids are good conductor and better for aforementioned applications. Moreover, comparative analysis proved the authenticity of the analysis γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

\( \hat{u}, \hat{v} \) :

Velocity components along horizontal and vertical directions

\( \hat{U} \) :

Main stream velocity

\( p \) :

Pressure

\( \hat{T} \) :

Temperature

\( \hat{T}_{\infty } \) :

Ambient temperature

\( \rho_{nf} \) :

Effective density

\( \mu_{nf} \) :

Effective dynamic viscosity

\( \sigma_{m}^{*} \) :

Electrical conductivity

\( (\rho c_{p} )_{nf} \) :

Effective heat capacity

\( \phi \) :

Volume fraction

\( \rho_{s} \) :

Density of Al2O3

\( \rho_{f} \) :

Density of H2O

\( k_{s} \) :

Thermal conductivity of Al2O3

\( k_{f} \) :

Thermal conductivity of H2O

\( \left( {\rho_{c} } \right)_{s} \) :

Heat capacity of Al2O3

\( \left( {\rho_{c} } \right)_{f} \) :

Heat capacity of H2O

\( nf \) :

Represents nanofluid

\( q\left( x \right) \) :

Radiative heat flux

\( \eta \) :

Dimensionless variable

\( F'(\eta ) \) :

Dimensionless velocity

\( \beta (\eta ) \) :

Dimensionless temperature

\( \psi \) :

Stream function

\( Pr \) :

Prandtl number

\( M \) :

Hartmann number

\( f_{1} \) :

Permeable parameter

References

  • Acharya N, Bag R, Kundu PK (2020) On the impact of nonlinear thermal radiation on magnetized hybrid condensed nanofluid flow over a permeable texture. Appl Nanosci 10:1679–1691

    Article  CAS  Google Scholar 

  • Ahmed N, Khan U, Mohyud-Din ST (2017) Influence of an effective Prandtl number model on squeezed flow of γAl2O3-H2O and γAl2O3-C2H6O2 nanofluids. J Mol Liq 238:447–454

    Article  CAS  Google Scholar 

  • Akbar Y, Abbasi FM, Shehzad SA (2020) Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation. Appl Nanosci. https://doi.org/10.1007/s13204-020-01446-3

    Article  Google Scholar 

  • Ashraf MB, Hayat T, Alsaedi A, Shehzad SA (2015) Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation. J Cent South Univ 22(3):1114–1123

    Article  Google Scholar 

  • Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I—Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physik, Leipzig 24:636–679

    Article  CAS  Google Scholar 

  • Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonians flows. ASME 66:99–105

    Google Scholar 

  • Corcione M (2011) Rayleigh–Bénard convection heat transfer in nanoparticle suspensions. Int J Heat Fluid Flow 32:65–77

    Article  CAS  Google Scholar 

  • Godson RL, Mohan LB, Wongwises DS (2010) Experimental investigation on the thermal conductivity and viscosity of silver—deionized water nanofluid. Exp Heat Transf 23:317–332

    Article  CAS  Google Scholar 

  • Hafeez M, Hashim K (2020) Jeffery–Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics. Appl Nanosci. https://doi.org/10.1007/s13204-020-01427-6

    Article  Google Scholar 

  • Hamilton HL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  CAS  Google Scholar 

  • Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Phys E 73:45–53

    Article  Google Scholar 

  • Hayat T, Ashraf MB, Alsaedi A, Shehzad SA (2015) Convective heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface with heat source. J Cent South Univ 22(2):717–726

    Article  CAS  Google Scholar 

  • Khaled ARA, Vafai K (2004) Hydromagnetic squeezed flow and heat transfer over a sensor surface. Int J Eng Sci 42:509–519

    Article  CAS  Google Scholar 

  • Khan IA, Mustafa M, Hayat T, Alsaedi A (2014) On three-dimensional flow and heat transfer over a non-linearly stretching sheet: analytical and numerical solutions. Plos One 9(9):e107287

    Article  Google Scholar 

  • Khan U, Ahmed N, Mohyud-Din ST (2017a) 3D squeezed flow of γAl2O3–H2O and γAl2O3–C2H6O2 nanofluids: a numerical study. Int J Hydrog Energy. 42(39):24620–24633

    Article  CAS  Google Scholar 

  • Khan U, Ahmed N, Mohy-ud-Din ST (2017b) Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes. Appl Therm Eng 113:1107–1117

    Article  CAS  Google Scholar 

  • Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in micro-heat sinks. Int J Heat Mass Transf 48(13):2652–2661

    Article  CAS  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99(8):084314

    Article  Google Scholar 

  • Miroshnichenko IV, Sheremet MA, Oztop HF, Salem KA (2016) MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int J Mech Sci 119:294–302

    Article  Google Scholar 

  • Patel HE, Sundararajan T, Das SK (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12:1015–1031

    Article  CAS  Google Scholar 

  • Prakash I, Tripathi D, Beg OA (2020) Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis. Appl Nanosci 10:1693–1706

    Article  CAS  Google Scholar 

  • Rashidi MM, Shahmohamadi H, Dinarvand S (2008) Analytical approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates. Math Probl Eng 2008:935095. https://doi.org/10.1155/2008/935095

    Article  Google Scholar 

  • Rashidi MM, Ganesh NV, Hakeem AAK, Ganga B, Lorenzini G (2016) Influences of an effective Prandtl number model on nano boundary layer flow of gamma-Al2O3–H2O and gamma-Al2O3–C2H6O2 over a vertical stretching sheet. Int J Heat Mass Transf 98:616–623

    Article  CAS  Google Scholar 

  • Shehzad SA, Hayat T, Alhuthali MS, Asghar S (2014) MHD three-dimensional flow of Jeffrey fluid with Newtonian heating. J Cent South Univ 21(4):1428–1433

    Article  Google Scholar 

  • Sheikholeslami M, Zia QMZ, Ellahi R (2016) Influence of induced magnetic field on free convection of nanofluid considering Koo–Kleinstreuer–Li (KKL) correlation. Appl Sci 6(11):1–13

    Article  Google Scholar 

  • Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I (2019) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf 135:470–478

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Sheremet MA, Shafee A, Babazadeh H (2020) Nanomaterial thermal performance within a pipe in presence of turbulator. Appl Nanosci. https://doi.org/10.1007/s13204-020-01436-5

    Article  Google Scholar 

  • Sheremet MA, Pop I, Nazar R (2015) Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int J Mech Sci 100:312–321

    Article  Google Scholar 

  • Sheremet MA, Pop I, Shenoy A (2016) Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16062-2

    Article  Google Scholar 

  • Siddiqui MM, Irum S, Ansari AR (2008) Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Math Model Anal 13(4):565–576

    Article  Google Scholar 

  • Stefan J (1874) Versuche über die Scheinbare Adhäsion, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch Naturwissenschaftliche Classe, vol 69. Abteilung, Wien, pp 713–721

    Google Scholar 

  • Wasp EJ, Kenny JP, Gandhi RL (1977) Solid-liquid flow slurry pipeline transportation, vol 1. Trans Tech Publications. ISBN: 0878490167, 9780878490165

  • Xu C, Yuan L, Xu Y, Hang W (2010) Squeeze flow of interstitial Herschel–Bulkley fluid between two rigid spheres. Particuology 8:360–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Khan.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Adnan, Ahmed, N. et al. Surface thermal investigation in water functionalized Al2O3 and γAl2O3 nanomaterials-based nanofluid over a sensor surface. Appl Nanosci 13, 119–129 (2023). https://doi.org/10.1007/s13204-020-01527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01527-3

Keywords

Navigation