Skip to main content
Log in

Novel Au nano-grating for detection of water in various electrolytes

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Camley R, Mills D (1984) Collective excitations of semi-infinite superlattice structures: surface plasmons, bulk plasmons, and the electron-energy-loss spectrum. Phys Rev B 29(4):1695

    Article  CAS  Google Scholar 

  • Chiavaioli F et al (2017) Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensors 7(2):23

    Article  CAS  Google Scholar 

  • Dai Y et al (2018) Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt Commun 416:66–70

    Article  CAS  Google Scholar 

  • Gauglitz G (1996) Opto-chemical and opto-immuno sensors. Sensors Update 1(1):1–48

    Article  CAS  Google Scholar 

  • Grande M et al (2011) Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sens Actuators, B 160(1):1056–1062

    Article  CAS  Google Scholar 

  • Guillaumée M, Dunbar LA, Stanley RP (2011) Description of the modes governing the optical transmission through metal gratings. Opt Exp 19(5):4740–4755

    Article  CAS  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  Google Scholar 

  • Homola J (2006) Electromagnetic theory of surface plasmons. Surface plasmon resonance based sensors. Springer, Berlin, pp 3–44

    Chapter  Google Scholar 

  • Homola J, Piliarik M (2006) Surface plasmon resonance (SPR) sensors. In: Homola J (ed) Springer series on chemical sensors and biosensors. Springer, Berlin

    Google Scholar 

  • Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators, B 54(1–2):3–15

    Article  CAS  Google Scholar 

  • Hong M et al (2012) Resonance in a sub-wavelength metal-dielectric free-standing grating utilized for gas sensors. Opt Commun 285(24):5480–5485

    Article  CAS  Google Scholar 

  • Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452

    Article  Google Scholar 

  • Iqbal T, Afsheen S (2016a) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256

    Article  CAS  Google Scholar 

  • Iqbal T, Afsheen S (2016b) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893

    Article  CAS  Google Scholar 

  • Iqbal T, Afsheen S (2017) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1):19–25

    Article  CAS  Google Scholar 

  • Iqbal T et al (2019) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1):147–154

    Article  CAS  Google Scholar 

  • Li H, Lin L, Xie S (2000) Refractive index of human whole blood with different types in the visible and near-infrared ranges. In Laser-tissue interaction XI: photochemical, photothermal, and photomechanical. International Society for Optics and Photonics

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  • McMullen P, Ziegler GM (1996) Lectures on polytopes (Graduate Texts in Mathematics, Vol. 152, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong 1995), ix + 370 pp., softcover: 3 540 94365 X,£ 21, hardcover: 3 540 94329 3,£ 47. Proc Edinburgh Math Soc 39(1):189–190

    Article  Google Scholar 

  • O’Brien RN, Quon D (1968) Refractive index of some alcohols and saturated hydrocarbons at 6328 A. J Chem Eng Data 13(4):517–517

    Article  Google Scholar 

  • Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando, pp 286–297

    Google Scholar 

  • Piliarik M et al (2012) High-resolution biosensor based on localized surface plasmons. Opt Exp 20(1):672–680

    Article  CAS  Google Scholar 

  • Polyanskiy M (2014) RefractiveIndex. info. MediaWiki. http://refractiveindex, p. 10

  • Rabbany SY et al (2000) Trace detection of explosives using a membrane-based displacement immunoassay. J Immunol Methods 246(1–2):69–77

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Poltronieri P (2017) Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes. Biosensors 7(4):63

    Article  CAS  Google Scholar 

  • Rangappa K (1947) Studies on the refractive index of milk. In Proceedings of the Indian Academy of Sciences Section B. Springer

  • Rosen JS (1947) The refractive indices of alcohol, water, and their mixtures at high pressures. JOSA 37(11):932–938

    Article  CAS  Google Scholar 

  • Rowe-Taitt CA et al (2000) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens Bioelectron 15(11–12):579–589

    Article  CAS  Google Scholar 

  • Touhami A (2014) Biosensors and nanobiosensors: design and applications. Nanomedicine 374–400

  • Unser S et al (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15(7):15684–15716

    Article  Google Scholar 

  • Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103

    Article  CAS  Google Scholar 

  • Yanase Y et al (2014) Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14(3):4948–4959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ijaz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, M., Aftab, M., Afsheen, S. et al. Novel Au nano-grating for detection of water in various electrolytes. Appl Nanosci 10, 4029–4036 (2020). https://doi.org/10.1007/s13204-020-01520-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01520-w

Keywords

Navigation