Skip to main content

Deformational and magnetic effects in Cu–Al–Mn alloys

Abstract

A comparative analysis of the magnetic, size and deformation effects of martensitic transformation in aged Cu–Al–Mn alloys with a minimum width of the temperature hysteresis was performed. According to the experimental studies of the behavior of alloys during martensitic transformations, the changes in temperature dependences of thermal expansion, magnetic susceptibility and electrical resistance, depending on preliminary thermomagnetic treatment of alloys, were found. The thermomagnetic treatment contributes to a change in the magnitude of volume effect of martensitic transformation. Using magnetic analysis, the state and distribution of precipitated particles, affecting both the magnetic characteristics and the volume effects of martensitic transformation in the alloys, were determined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SMAs:

Shape memory alloys

MT:

Martensitic transformation

TMT:

Thermomagnetic treatment

SE:

Superelastic

References

  1. Altenberger I, Heinrichs S, Kuhn H-A (2017) Microstructure and properties of ultra high strength high-alloyed and quasi-equiatomic Cu–Al–Mn alloys. Conference EMC 2017, GDMB—European Metallurgical Conference, Leipzig, June 2017, https://emc.gdmb.de/previous-proceedings/proceedings-of-emc-2017

  2. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120–129

    Article  Google Scholar 

  3. Bocciolone M, Carnevale M, Collina A, Lecis N, Conte AL, Previtali B, Biffi CA, Bassani P, Tuissi A (2012) Design for the damping of a railway collector based on the application of shape memory alloys. Smart Mater Res. https://doi.org/10.1155/2012/797319

    Article  Google Scholar 

  4. Bubley IR, Koval YuN, Titov PV (1996) Features of structural and martensitic transformations in alloys of the Cu–Al–Mn system. Metallofiz Noveishie Tekhnol 18(4):20–32 (in Russian)

    Google Scholar 

  5. Hudak M, Tothova J, Hudak O (2018) NMR and the antiferromagnetic crystal phase regions in rapidly quenched ribbons and in alloys of the type Cu−Mn−Al. arXiv: 1804.04196 [cond-mat.mtrl-sci] https://doi.org/10.13140/RG.2.2.33813.63207

  6. Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. Metall Mater Trans A 27(8):2187–2195

    Article  Google Scholar 

  7. Kokorin VV (1987) Martensitic transformations in inhomogeneous solid solutions. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  8. Kokorin VV, Gunko LP, Shevchenko OM (1993) Scipta Met et Mater 28:35

    CAS  Article  Google Scholar 

  9. Kozlova LE, Titenko AN (2006) Stress-induced martensitic transformation in polycrystalline aged Cu–Al–Mn alloys. Mater Sci Eng: A 438–440:738–742. https://doi.org/10.1016/j.msea.2006.02.159

    CAS  Article  Google Scholar 

  10. Kurdyumov GV, Handros LG (1949) On the “thermoelastic” phase equilibrium in martensitic transformations. Doklady AN SSSR 66(2):211–214 (in Russian)

    CAS  Google Scholar 

  11. Landa M, Sedlák P, Šittner P, Seiner H, Novák V (2007) Temperature dependence of elastic properties of cubic and orthorhombic phases in Cu–Al–Ni shape memory alloy near their stability limits. Mater Sci Eng: A 462(1–2):320–324. https://doi.org/10.1016/j.msea.2006.02.472

    CAS  Article  Google Scholar 

  12. Michelutti B, Perrierde la Bathie R, du Tremolet de Lacheisserie E, Waintal A (1978) Magnetization, magnetocrystalline anisotropy, magnetostriction and elastic constants of the Heusler alloy: Cu2MnAl. Solid State Commun 25(3):163–168 10.1016/0038-1098(78)91470-9

  13. Omori T, Sutou Y, Kainuma R, Isida K (2006) Development of Cu–Al–Mn-based Shape Memory Alloys. In: Welter JM (ed) Copper: Better Properties for Innovative Products, Wiley-VCH, Weinheim, p 194–202, https://doi.org/10.1002/9783527610327.ch24

  14. Sheng X, Haiyou H, Jianxin X, Kimura Y, Xu X, Omori T, Kainuma R (2017) Dynamic recovery and superelasticity of columnar-grained Cu–Al–Mn shape memory alloy. Metals 7(4):141. https://doi.org/10.3390/met7040141

    CAS  Article  Google Scholar 

  15. Sutou Y, Omori T, Kainuma R, Ishida K (2008) Ductile Cu–Al–Mn based shape memory alloys: general properties and applications. Mater Sci Technol 4(8):896–901. https://doi.org/10.1179/174328408X302567

    CAS  Article  Google Scholar 

  16. Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61(10):3842–3850. https://doi.org/10.1016/j.actamat.2013.03.022

    CAS  Article  Google Scholar 

  17. Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2004) Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater Sci Eng: A 378:278–282. https://doi.org/10.1016/j.msea.2003.12.048

    CAS  Article  Google Scholar 

  18. Takzey GA, Mirebeau I, Gun'ko LP, Sych II, Surzhenko OB, Cherepov SV, Troschenkov YN (1999) Study of the onset of a long-range ferromagnetic order in an ensemble of small particles with giant magnetic moments. J Magn Magn Mat 202(2):376–384. https://doi.org/10.1016/S0304-8853(99)00357-1

    Article  Google Scholar 

  19. Titenko A, Demchenko L (2016) Effect of annealing in magnetic field on ferromagnetic nanoparticle formation in Cu–Al–Mn alloy with induced martensite transformation. Nanoscale Res Lett 11:237. https://doi.org/10.1186/s11671-016-1453-2

    CAS  Article  Google Scholar 

  20. Titenko AN, Demchenko LD, Perekos AO, Gerasimov OYu (2017) Effect of thermomagnetic treatment on structure and properties of Cu–Al–Mn alloy. Nanoscale Res Lett 12:285. https://doi.org/10.1186/s11671-017-2052-6

    CAS  Article  Google Scholar 

  21. Titenko A, Demchenko L, Kozlova L, Babanli M, Ren TZ, Ya T (2020) Deformational behavior of Cu–Al–Mn alloys under the influence of temperature and mechanical stress. Appl Nanosci. https://doi.org/10.1007/s13204-020-01442-7

    Article  Google Scholar 

  22. Titenko AM, Perekos AO, Demchenko LD (2014) Martensitic transformation during the formation of nanoparticles system in the Cu–Al–Mn alloy after annealing in magnetic field. Nanosistemi Nanomateriali Nanotehnologii 12(1):123 (in Ukrainian)

    CAS  Google Scholar 

  23. Warlimont H, Delay L (1974) Martensitic transformations in copper-, silver-, and gold-based alloys. Pergamon, Oxford

    Google Scholar 

Download references

Acknowledgements

This research was supported by the laboratories of the Institute of Magnetism, the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” and Azerbaijan State University of Oil and Industry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Demchenko.

Ethics declarations

Conflict of interest

The authors declare that none of the authors have any competing interests in the manuscript. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Titenko, A., Demchenko, L., Perekos, A. et al. Deformational and magnetic effects in Cu–Al–Mn alloys. Appl Nanosci 10, 5037–5043 (2020). https://doi.org/10.1007/s13204-020-01494-9

Download citation

Keywords

  • Cu–Al–Mn shape memory alloys
  • Aging in magnetic field
  • Martensitic transformation
  • Thermal expansion
  • Volume effect
  • Magnetic properties
  • Dimensional and magnetic parameters of nanoparticles