Skip to main content

Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water

Abstract

The composites based on hydrated zirconium dioxide and zirconium hydrophosphate have been obtained. The materials contained 0.5–7% of graphene-like additions, which were obtained by chemical treatment of multiwalled carbon nanotubes (8–15 layers). The composites as well as their constituents were investigated with the XRD, FTIR, TEM, and porometric methods. When the content of carbon material is 2%, large granules (0.3–0.35 mm) are formed. GO was found to increase specific surface area of zirconium hydrophosphate and reduces it in the case of zirconium dioxide. Despite the small amount of GO additions, these composites show a growth of total sorption capacity of 12–14% in alkaline media. Sorption of cationic complexes of U(VI) under batch conditions was investigated. The composite based on zirconium hydrophosphate allows us to remove U(VI) from water practically completely in the presence of hardness ions; the highest regeneration degree is also achieved. Sorption kinetics is described by the model of pseudo-second order. The Dubinin–Raduchkevich model was applied to adsorption isotherms. As found, the mechanism of sorption is ion exchange that is accompanied by additional interaction of sorbed ions with functional groups.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Ali AH (2018) Potentiality of zirconium phosphate synthesized from zircon mineral for uptaking uranium. Separ Sci Technol 53(14):2284–2296

    CAS  Google Scholar 

  • Alirezazadeh N, Garshasbi H (2003) A survey of natural uranium concentrations in drinking water supplies in Iran. Iran J Radiat Res 1(3):139–142

    Google Scholar 

  • Almazan-Torres MA, Drot P, Mercier-Bion F, Catalette H, Auwer CD, Simoni E (2008) Surface complexation modeling of uranium(VI) sorbed onto zirconium oxophosphate versus temperature: Thermodynamic and structural approaches. J Colloid Interface Sci 323(1):42–51

    CAS  Google Scholar 

  • Amphlett CB (1964) Inorganic ion exchangers. Elsevier, Amsterdam

    Google Scholar 

  • Awwad NS (2018) Uranium: safety, resources, separation and thermodynamic calculation. IntechOpen, London

    Google Scholar 

  • Bachmaf S, Merkel BJ (2011) Sorption of uranium(VI) at the clay mineral–water interface. Environ Earth Sci 63:925–934

    CAS  Google Scholar 

  • Brine W (2010) The toxicity of depleted uranium. Int J Environ Res Public Health 7:303–313

    Google Scholar 

  • Cornelis R, Caruso JA, Crews H, Heumann KG (2005) Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health, Wiley, Chichester

  • Criscenti LJ, Sverjensky DA (1999) The role of electrolyte anions (ClO4-, NO3-, and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions. Environ Sci 31(17):828–899

    Google Scholar 

  • Danilov MO, Slobodyanyuk IA, Rusetskii IA, Kolbasov GY (2016a) Synthesis of reduced graphene oxide obtained from multiwalled carbon nanotubes and its electrocatalytic properties. In: Aliofkhazraei M, Ali N, William I. Milne WI, Ozkan CS, Mitura S, Gervasoni JL (eds) Graphene science handbook: fabrication methods. CRS press, Boca Raton, London, New York, pp 205–226

  • Danilov MO, Rusetskii IA, Slobodyanyuk IA, Dovbeshko GI, Kolbasov GY, Strubov YY (2016) Synthesis, properties, and application of graphene-based materials obtained from carbon nanotubes and acetylene black. Ukr J Phys 7(1):3–11

    CAS  Google Scholar 

  • Dragan ES, Avram E, Axente D, Marcu C (2004) Ion-exchange resins.III. Functionalization–morphology correlations in the synthesis of some macroporous, strong basic anion exchangers and uranium-sorption properties evaluation. J Polym Sci 42(10):2451–2461

    CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of grapheme oxide. Chem Soc Rev 39(1):228–240

    CAS  Google Scholar 

  • Drot R, Simoni E, Alnot M, Ehrhardt JJ (1998) Structural environment of uranium (VI) and europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies. J Interface Colloid Sci 205(2):410–416

    CAS  Google Scholar 

  • Dzyazko YS, Perlova OV, Perlova NA, Volfkovich YM, Sosenkin VE, Trachevskii VV, Sazonova VF, Palchik AV (2017) Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin Water Treat 69:142–152

    Google Scholar 

  • Dzyazko YS, Trachevskii VV, Rozhdestvenskaya LM, Vasilyuk SL, Belyakov VN (2013) Interaction of sorbed Ni (II) ions with amorphous zirconium hydrogen phosphate. Russ J Phys Chem 87(5):840–845

    CAS  Google Scholar 

  • Dzyazko YS, Ogenko VM, Volfkovich YM, Sosenkin VE, Maltseva TV, Yatsenko TV, Kudelko KO (2018) Composite consisting of hydrated zirconium dioxide and grapheme oxide for removal of organic and inorganic components from water. Chem Phys Technol Surf 9(4):417–431

    CAS  Google Scholar 

  • Dzyazko YS, Volfkovich YM, Sosenkin VE, Nikolskaya NF, Gomza YP (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Let 9(1):271. https://doi.org/10.1186/1556-276X-9-27

    CAS  Article  Google Scholar 

  • Dzyazko Y, Kolomyets E, Borysenko Y, Chmilenko V, Fedina I (2019) Organic-inorganic sorbents containing hydrated zirconium dioxide for removal of chromate anions from diluted solutions. Mater Today Proc 6(2):260–269

    CAS  Google Scholar 

  • Dzyaz'ko YS, Belyakov VN, Stefanyak NV, Vasilyuk SL (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773

    CAS  Google Scholar 

  • Everett J (1998) Adsorption of Metals by Geomedia: Variables, Mechanisms, and Model Applications. Academic Press, San-Diego, London, Boston, New York, Sidney, Tokyo, Toronto

    Google Scholar 

  • Gilson ER, Huang S, Jaffé PR (2015) Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions. Biodegradation 26(6):475–482

    CAS  Google Scholar 

  • Futaba DN, Yamada T, Kobashi K, Yumura M, Hata K (2011) Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction. J Am Chem Soc 133(15):5716–5719

    CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, Surface Area and Porosity. Academic Press, London

    Google Scholar 

  • Gönder ZB, KayaI Y, Vergili I, Barlas H (2006) Capacity loss in an organically fouled anion exchanger. Desalination 189(1–3):303–307

    Google Scholar 

  • Gu B, Ku Y-K, Jardine PM (2004) Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ Sci Technol 38(11):3184–3188

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    CAS  Google Scholar 

  • Hoover J, Gonzales M, Shuey C, Barney Y, Lewis J (2017) Elevated arsenic and uranium concentrations in unregulated water sources on the navajo nation, USA. Exposure and Health 9(2):113–124

    CAS  Google Scholar 

  • Kadam BV, Maiti B, Sathe RM (1981) Selective spectrophotometric method for the determination of uranium(VI). Analyst 106(1263):724–726

    CAS  Google Scholar 

  • Kao D-Y, Chen L-C, Wen T-J, Chu C-F (2016) Study on the leachable behavior of cation exchange resins. J Nucl Sci Technol 53(6):921–927

    CAS  Google Scholar 

  • Khawassek YM, Masoud AM, Taha MH, Hussein AEM (2018) J Radioanal Nucl Chem 315(3):493–502

    CAS  Google Scholar 

  • Kostrikin AV, Spiridonov FM, Komissarova LN, Lin’ko IV, Kosenkova OV (2010) On the structure and dehydration of hydrous zirconia and hafnia xerogels. Russ J Inorg Chem 55(6):866–875

    CAS  Google Scholar 

  • Leybros A, Roubaud A, Guichardon P, Boutin O (2010) Ion exchange resins destruction in a stirred supercritical water oxidation reactor. J Supercrit Fluids 51(3):369–375

    CAS  Google Scholar 

  • Ling L, Zhang W-x (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791

    CAS  Google Scholar 

  • Liu W, Zhao X, Wang T, Zhao D, Ni J (2016) Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem Eng J 286:427–435

    CAS  Google Scholar 

  • Liu X, Du P, Pan W, Dang C, Qian T, Liu H, Liu W, Zhao D (2018) Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl Catal B: Environ 231:11–22

    CAS  Google Scholar 

  • Loon LR, Hummel W (1999) The degradation of strong basic anion exchange resins and mixed-bed ion-exchange resins: effect of degradation products on radionuclide speciation. Nucl Technol 128(3):388–401

    Google Scholar 

  • Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J 220:98–106

    CAS  Google Scholar 

  • Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Prasada Rao T (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65(1):192–200

    CAS  Google Scholar 

  • Ordoñez-Regil E, Drot R, Simoni E (2003) Surface complexation modeling of uranium(VI) sorbed onto lanthanum monophosphate. J Colloid Interface Sci 263(2):391–399

    Google Scholar 

  • Orloff KG, Mistry K, Charp P, Metcalf S, Marino R, Shelly T, Melaro E, Donohoe AM, Jones RL (2004) Human exposure to uranium in groundwater. Environ Res 90(3):319–326

    Google Scholar 

  • Outokesh M, Sepehrian H, Kosari M, Fasihi J (2016) Uranium ions removal using Amberlite CG-400 anion exchanger resin in the presence of sulfate anions. Int J Eng 29(6):728–734

    Google Scholar 

  • Pan Z, Li W, Fortner JD, Giammar DE (2017) Measurement and surface complexation modeling of U(VI) adsorption to engineered iron oxide nanoparticles. Environ Sci Technol 51(16):9219–9226

    CAS  Google Scholar 

  • Perlova OV, Tekmenzi KI, Perlova NA, Polikarpov AP (2019) Fibrous ion-exchangers FIBAN as sorbents of uranium(VI) compounds present in sulfate solutions. Odesa Natl Univ Herald Chem 24(3):75–89 in Ukrainian

    Google Scholar 

  • Perlova N, Dzyazko Y, Perlova O, Palchik A, Sazonova V (2017) Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations. Nanoscale Res Lett 12:209. https://doi.org/10.1186/s11671-017-1987-y

    CAS  Article  Google Scholar 

  • Perlova O, Dzyazko Y, Halutska I, Perlova N, Palchik A (2018) Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. Springer Proc Phys 210:3–15

    CAS  Google Scholar 

  • Pourbeyram S (2016) Effective removal of heavy metals from aqueous solutions by graphene oxide–zirconium phosphate (GO–Zr–P) nanocomposite. Ind Eng Chem Res 55(19):5608–5617

    CAS  Google Scholar 

  • Reinoso-Maset E, Ly J (2016) Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J Environ Radioact 157:136–148

    CAS  Google Scholar 

  • Rieman W, Walton H (1970) Ion exchange in analytical chemistry. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig

    Google Scholar 

  • Sazonova VF, Perlova OV, Perlova NA, Polikarpov AP (2017) Sorption of uranium (VI) compounds on fibrous anion exchanger surface from aqueous solutions. Colloid J 79(2):270–277

    CAS  Google Scholar 

  • Seredych M, Bandosz TJ (2011) Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chem Eng J 166:1032–1038

    CAS  Google Scholar 

  • Seredych M, Bandosz TJ (2010) Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J Phys Chem 114(34):14552–14560

    CAS  Google Scholar 

  • Somasekhara Reddy MC, Sivaramakrishna L, Varada Reddy A (2012) The use of an agricultural waste material Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J Hazard Mater 203–204:118–127

    Google Scholar 

  • Szabo T, Tombacz E, Illes E, Dekany I (2018) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545

    Google Scholar 

  • Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D (2015) Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem Eng J 259:752–760

    CAS  Google Scholar 

  • Um W, Serne RJ, Brown CF, Rod KA (2008) Uranium(VI) sorption on iron oxides in hanford site sediment: application of a surface complexation model. Appl Geochem 23(9):2649–2657

    CAS  Google Scholar 

  • Volfkovich YM, Rychagov AY, Sosenkin VE, Efimov ON, Os’makov MI (2014) Measuring the specific surface area of carbon nanomaterials by different methods. Russ J Electrochem 50(11):1099–1101

    CAS  Google Scholar 

  • Volfkovich YM, Sergeeva AG, Zolotova TK, Afanasieva SD, Efimov ON, Krinichnaya EP (1999) Macrokinetics of polyaniline based electrode: effects of porous structure, microkinetics, diffusion, and electrical double layer. Electrochim Acta 44(10):1543–1558

    Google Scholar 

  • Volfkovich YM (1984) Influence of the electric double-layer on the internal interfaces in an ion-exchanger on its electrochemical and sorption properties. Soviet Electrochem 20(5):621–628

    Google Scholar 

  • Wang F, Liu Q, Li R, Li Z, Zhang H, Liu L, Wang J (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids Surfaces A: Physicochem Eng Aspects 490:215–221

    CAS  Google Scholar 

  • Wen Z, Huang K, Niu Y, Yao Y, Wang S, Cao Z, Zhong H (2019) Kinetic study of ultrasonic-assisted uranium adsorption by anion exchange resin. Physicochem Eng Aspects Coll Surf A. https://doi.org/10.1016/j.colsurfa.2019.124021

    Article  Google Scholar 

  • Yang A, Zhu Y, Huang CP (2018) Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium. Sci Rep 8:90584. https://doi.org/10.1038/s41598-018-27111-y

    CAS  Article  Google Scholar 

  • Zakutevskyy OI, Psareva TS, Strelko VV (2012) Sorption of U(VI) ions on sol-gel-synthesized amorphous spherically granulated titanium phosphates. Russ J Appl Chem 85(9):1366–1370

    CAS  Google Scholar 

  • Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications. Springer, Heidelberg, New York, Dordrecht, London

    Google Scholar 

  • Zvezdov A, Ishigure K (2003) The effect of corrosion particles present in water solutions on the behavior of strong acid cation-exchange resins during the process of cobalt removal. Desalination 154(2):153–160

    CAS  Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the projects entitled "Developments of materials and processes for removal of valuable and toxic components from the solutions of biogenic and technogenic origin" (supported by the NAS of Ukraine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ivanova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perlova, O.V., Dzyazko, Y.S., Palchik, A.V. et al. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl Nanosci 10, 4591–4602 (2020). https://doi.org/10.1007/s13204-020-01313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01313-1

Keywords

  • Uranium
  • Zirconium phosphate
  • Zirconium oxide
  • Graphene oxide
  • Composite
  • Sorption