Study on vibration-assisted thermal nanoimprint lithography

Abstract

In thermal nanoimprint lithography, polymethyl methacrylate (PMMA) with good thermoplasticity is often used as transferring media. However, due to the special properties of PMMA, the accuracy of microstructure transferred to the surface will be seriously affected. To address this problem, the micro-vibration by piezo-driven is introduced in conventional thermal nanoimprint lithography. Because of the micro-vibration will change the contact stress during the embossing process and reduce the contact time. This will improve the filling rate of PMMA during the embossing process and transfer the pattern of stamp to PMMA with excellent feature fidelity. Compared with the traditional nanoimprint lithography, the filling rate of PMMA is increased by 92% after the introduction of vibration by piezo-driven. Then, a new motion model is built to verify the rationality of introducing vibration. Besides, the effect of frequency and amplitude with filling rate is analyzed by finite element method to obtain the best frequency and amplitude for experiments. Finally, the transferred pattern is observed by experiment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bay RK, Shimomura S, Liu Y, Ilton M, Crosby AJ (2018) Confinement effect on strain localizations in glassy polymer films. Macromolecules 51:3647–3653

    CAS  Article  Google Scholar 

  2. Bourbaba H, Mohamed B (2013) Mechanical behavior of polymeric membrane: comparison between PDMS and PMMA for micro fluidic application. Energy Proc 36:231–237

    CAS  Article  Google Scholar 

  3. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    CAS  Article  Google Scholar 

  4. David EH, Bala G, Wang Q, Matthew D, Adam KR (2013) Process control in micro-embossing: a review. https://dspace.mit.edu/handle/1721.1/3917. Accessed 17 Oct 2013

  5. Dong Y, Lin RJT, Bhattacharyya D (2005) Determination of critical material parameters for numerical simulation of acrylic sheet forming. J Mater Sci 40(2):399–410

    CAS  Article  Google Scholar 

  6. Gu Y, Chen XY, Lin JQ, Lu MM (2018) Vibration-assisted roll-type polishing system based on compliant micro-motion stage. Micromachines 9:499

    Article  Google Scholar 

  7. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513

    CAS  Article  Google Scholar 

  8. Hernández-Jiménez A, Hernández-Santiago J, Macias-Garcıa A, Sánchez-González J (2002) Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym Testing 21(3):325–331

    Article  Google Scholar 

  9. Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2002) Flow behavior of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229–245

    Article  Google Scholar 

  10. Hirai Y, Fujiwara M, Okuno T, Tanaka Y, Endo M, Irie S, Nakagawa K, Sasago M (2001) Study of the resist deformation in nanoimprint lithography. J Vac Sci Technol B 19:2811–2815

    CAS  Article  Google Scholar 

  11. Hirai Y, Harada S, Kikuta H, Tanaka Y, Okano M, Isaka S, Kobayasi M (2002) Imprint lithography for curved cross-sectional structure using replicated Ni mold. J Vac Sci Technol B 20:2867–2871

    CAS  Article  Google Scholar 

  12. Hirai Y, Takagi N, Harada S, Tanaka Y (2002b) Fine pattern fabrication on a polymer plate by direct imprint lithography. Sens Micromach Soc 122:404–408

    Google Scholar 

  13. Hirai Y, Yoshikawa T, Takagi N, Yoshida S, Yamamoto K (2003a) Mechanical properties of poly-methyl methacrylate (PMMA) for nano imprint lithography. J Photopolym Sci Technol 16:615–620

    CAS  Article  Google Scholar 

  14. Hirai Y, Yoshida S, Takagi N (2003b) Defect analysis in thermal nanoimprint lithography. J Vac Sci Technol B 21:2765–2770

    CAS  Article  Google Scholar 

  15. Hirai Y, Konishi T, Yoshikawa T, Yoshida S (2004) Simulation and experimental study of polymer deformation in nanoimprint lithography. J Vac Sci Technol B 22:3288–3293

    CAS  Article  Google Scholar 

  16. Kim KS, Kim KD, Jeong JH (2013) Size-dependent adhesion of nanopatterns for nanoimprint applications. Electron Mater Lett 9:845–850

    CAS  Article  Google Scholar 

  17. Kishi H, Yoshioka H, Jianguo Y, Sumiyoshi N, Goto H, Murakoshi Y, Maeda R (2003) Thermal imprinting stepper with ultrasonic vibration mechanism and rapid temperature control system. In: Proceedings of second international conference on nanoimprint nanoprint technology: B6, Boston, 3–5 Dec 2003

  18. Li X, Sang XX, Wang LK, Bai HY, Yang JG, Ni CH, Li Y (2018) Patterning thermoplastic polymers by fast room-temperature imprinting. J Mater Sci 53:5429–5435

    Article  Google Scholar 

  19. Lin CH, Chen R (2006) Ultrasonic nanoimprint lithography: a new approach to nanopatterning. J Micro/Nanolithogr 5(1):011003

    Article  Google Scholar 

  20. Lin CH, Chen R (2007) Effects of mold geometries and imprinted polymer resist thickness on ultrasonic nanoimprint lithography. J Micromech Microeng 17:1220–1231

    CAS  Article  Google Scholar 

  21. Lin CH, Wang CY, Chen R (2009) Assisted-heating for ultrasonic nanoimprint lithography. In: 9TH IEEE Conference On Nanotechnology, pp 126–129

  22. Mathiesen D, Vogtmann D, Dupaix R (2013) Stress-relaxation behavior of poly (methyl methacrylate) (PMMA) across the glass transition temperature. Challenges in mechanics of time-dependent materials and processes in conventional and multifunctional materials, vol 2. Springer, Berlin, pp 9–15

  23. Mekaru H, Takahashi M (2008) Ultrasonic nanoimprint on poly (ethylene terephthalate) at room temperature. Jpn J Appl Phys 47(6S):5178

    CAS  Article  Google Scholar 

  24. Mekaru H, Goto H, Takahashi M (2007a) Development of ultrasonic micro hot embossing technology. Microelectron Eng 84(5–8):1282–1287

    CAS  Article  Google Scholar 

  25. Mekaru H, Noguchi T, Goto H, Takahashi M (2007b) Nanoimprint lithography combined with ultrasonic vibration on polycarbonate. Jpn J Appl Phys 46(9S):6355

    CAS  Article  Google Scholar 

  26. Mekaru H, Nakamura O, Maruyama O, Maeda R, Hattori T (2007c) Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration. Microsyst Technol 13:385–391

    CAS  Article  Google Scholar 

  27. Nguyen LP, Wu MH, Hung C (2019) Finite element analysis of ultrasonic vibration-assisted microstructure hot glass embossing process. Aust J Mech Eng 17(3):199–208

    Article  Google Scholar 

  28. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    CAS  Article  Google Scholar 

  29. Park JH, Lee KY, Park K (2015) Coupled numerical analysis to investigate the heating mechanism of ultrasonic imprint lithography. Ultrasonics 60:96–102

    CAS  Article  Google Scholar 

  30. Scheer HC, Schulz H, Hoffmann T, Torres C (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B 16:3917–3921

    CAS  Article  Google Scholar 

  31. Schneider P, Steitz C, Schafer KH, Ziegler C (2009) Hot embossing of pyramidal micro-structures in PMMA for cell culture. Phys Status Solidi A 206:501–507

    CAS  Article  Google Scholar 

  32. Shirazi HA, Mirmohammadi SA, Shaali M, Asnafi A, Ayatollahi MR (2017) A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis. Polym Testing 59:328–335

    CAS  Article  Google Scholar 

  33. Yee M, Souza MC, Valera ST, Demarquette RN (2009) Stress relaxation behavior of PMMA/PS polymer blends. Rheol Acta 48:527–541

    CAS  Article  Google Scholar 

  34. Zheng X, Wang Q, Zhang R, Ma LJ, Luan JJ (2018) Effects of aspect ratio and metal layer thickness on demoulding of metal/polymer bilayer gratings during nanoimprinting. Sci Rep 8:12720

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Joint Funds of Nation Natural Science of Foundation of China (Grant No. U19A20104); the Micro-Nano and Ultra Precision Key Laboratory of Jilin Province (Grant No. 20140622008JC); Science and Technology Development Projects of Jilin Province (Grant. 20190201254JC and 20190302065GX).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yan Gu or Jieqiong Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Gu, Y., Lin, J. et al. Study on vibration-assisted thermal nanoimprint lithography. Appl Nanosci 10, 3315–3324 (2020). https://doi.org/10.1007/s13204-020-01280-7

Download citation

Keywords

  • Vibration-assisted
  • Thermal nanoimprint lithography
  • Polymethyl methacrylate (PMMA)
  • Filling rate