Skip to main content

Larger root nodules increased Fe, Mo, Mg, P, Ca, Mn, K in the roots and higher yield in chickpea grown from nano FeS2 pre-treated seeds: emulating nitrogenase

Abstract

N2-fixing bacteria symbiotically dwell inside the root nodules of legume and converts atmospheric N2 to NH3. Unlike high temperature–pressure Haber’s process, this conversion in the nodule is orchestrated by nitrogenase: an enzyme with Fe-S, Fe-Mo, Fe-V cofactor, at its heart. Strategies to increase the nodule population could reduce nitrogen fertilizer use. Here we discovered that pre-treating the chickpea seeds with nano FeS2 (iron pyrite) resulted in a denser root network with larger root nodules. It improved the shoot system and resulted in a higher yield. We observed a higher concentration of Fe, Mo, Mg, P, Ca, Mn, K in the roots of chickpea: possibly emulating nitrogenase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci 4:359

    Article  Google Scholar 

  2. Burén S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 365(2):fnx274

    Article  Google Scholar 

  3. Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137

    CAS  Article  Google Scholar 

  4. Das CK, Srivastava G, Dubey A et al (2016a) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1:2

    Article  Google Scholar 

  5. Das CK, Srivastava G, Dubey A et al (2016b) The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSC Adv 6(71):67029–67038

    CAS  Article  Google Scholar 

  6. Das CK, Jangir H, Kumar J et al (2018) Nano-pyrite seed dressing: a sustainable design for NPK equivalent rice production. Nanotechnol Environ Eng 3:14

    Article  Google Scholar 

  7. Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114(8):4041–4062

    CAS  Article  Google Scholar 

  8. Hood G, Ramachandran V, East AK et al (2017) Manganese transport is essential for N2 -fixation by Rhizobium leguminosarum in bacteroids from galegoid but not phaseoloid nodules. Environ Microbiol 19(7):2715–2726

    CAS  Article  Google Scholar 

  9. Hu Y, Ribbe MW (2011) Historic overview of nitrogenase research, In: Ribbe M (eds) Nitrogen fixation. Methods in molecular biology (methods and protocols), vol 766 Humana Press, Totowa.

    Chapter  Google Scholar 

  10. Jangir H, Das CK, Kumar J et al (2018) Nano pyrite (FeS2) root priming enhances chilli and marigold production in nutrients-deficient soil: a nano strategy for fertiliser tuning. Appl Nanosci 9(3):327–340

    Article  Google Scholar 

  11. Jangir H, Bhardwaj A, Srivastava G et al (2019) Nano pyrite driven root foraging increases production of the heavy feeders, viz., cauliflower, cabbage and tomato in nutrient deficient soil with no fertiliser application. Adv Nat Sci 10(3):035007

    Google Scholar 

  12. Jiang F, Peckler LT, Muscat AJ (2015) Phase pure pyrite FeS2 nanocubes synthesized using oleylamine as ligand, solvent, and reductant. Cryst Growth Des 15(8):3565–3572

    CAS  Article  Google Scholar 

  13. Mus F, Alleman AB, Pence N et al (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10(4):523–538

    CAS  Article  Google Scholar 

  14. Mus F, Colman DR, Peters JW et al (2019) Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free Radic Biol Med S0891–5849(18):32253–32256

    Google Scholar 

  15. Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    CAS  Article  Google Scholar 

  16. Rai R, Singh SN, Prasad V (1982) Effect of pressmud amended pyrite on symbiotic N2-fixation, active iron contents of nodules, grain yield and quality of chick pea (Cicer arietinum Linn.) genotypes in calcareous soil. J Plant Nutr (Iron Nutrition and Interactions in Plants) 5(4–7):905–913

    CAS  Google Scholar 

  17. Salavati A, Shafeinia A, Klubicova K et al (2013) Proteomic insights into intra- and intercellular plant-bacteria symbiotic association during root nodule formation. Front Plant Sci 4:28

    Article  Google Scholar 

  18. Slatni T, Krouma A, Aydi S, Chaiffi C, Gouia H, Abdelly C (2008) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Plant Soil 312:49–57

    CAS  Article  Google Scholar 

  19. Smil V (2004) Enriching the earth: fritz haber, carl bosch, and the transformation of world food production, 1st edn. MA: MIT Press, Cambridge

    Google Scholar 

  20. Smit G, Tubbing DMJ, Kijne JW et al (1991) Role of Ca2+ in the activity of rhicadhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae cells to plant root hair tips. Arch Microbiol 155(3):278–283

    CAS  Article  Google Scholar 

  21. Srivastava G, Das A, Kusurkar TS et al (2014a) Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Mater Express 4:23–31

    CAS  Article  Google Scholar 

  22. Srivastava G, Das CK, Das A et al (2014b) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv 4:58495–58504

    CAS  Article  Google Scholar 

  23. Tang CX, Robson AD, Dilworth MJ (1990a) The role of iron in nodulation and nitrogen-fixation in Lupinus angustifolius L. New Phytol 114:173–182

    CAS  Article  Google Scholar 

  24. Tang CX, Robson AD, Dilworth MJ (1990b) A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius L. New Phytol 115:61–67

    CAS  Article  Google Scholar 

  25. Thomas RJ, Hungria M (1988) Effect of potassium on nitrogen fixation, nitrogen transport, and nitrogen harvest index of bean. J Plant Nutr 11(2):175–188

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Mr DD Pal for XPS, Mr A Tiwari for XRD facility, Mr Mitesh for FESEM, Ms V Singh for FTIR at Advance Centre for Material Science, IIT Kanpur; Prof A Singh for providing ICP-MS facility; Mr Satish Singh for providing Institute Nursery facility. HJ is supported by doctoral fellowship from MHRD, GOI and this work is an integral part of HJ’s doctoral thesis. The research work is part of the Scheme for Transformational and Advanced Research in Sciences (STARS), Indian Institute of Science, Bangalore, 560012, India (MHRD, GOI) for the project 'Improving pulse (Chick pea and soybean) production and nitrogen content of the soil by nano iron pyrite seed treatment (626)' awarded to MD.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mainak Das.

Ethics declarations

Conflicts of interest

HJ, AB, and MD declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jangir, H., Bhardwaj, A. & Das, M. Larger root nodules increased Fe, Mo, Mg, P, Ca, Mn, K in the roots and higher yield in chickpea grown from nano FeS2 pre-treated seeds: emulating nitrogenase. Appl Nanosci 10, 445–454 (2020). https://doi.org/10.1007/s13204-019-01238-4

Download citation

Keywords

  • Nano iron pyrite
  • Legume
  • Chickpea
  • Nitrogenase
  • Rhizobium
  • Nano-agriculture