A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface

Abstract

Our main emphasis in this manuscript was to scrutinize the aspects of activation energy for magnetized Cross nanofluid subjected to cylindrical surface. Formulation for energy expression is developed through heat sink-source phenomenon. More specifically, Velocity of Cross liquid is deliberated by considering infinite shear rate viscosity and Lorentz’s force. The considered Cross nanoliquid expression (Buongiorno relation) comprises thermophoretic and Brownian movement mechanisms. Moreover, Chemical processes are deliberated subjected to appliance of activation energy. Bvp4c algorithm is implemented to tackle the nonlinear structure. Outcomes for Sherwood number, Nusselt number, skin fraction, temperature, concentration and velocity are presented in this manuscript. Our results revealed that temperature of Cross nanoliquid intensifies for larger thermophoretic parameter. Moreover, nanoliquid concentration dwindles for greater estimation of activation energy parameter.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

\(u,v\) :

Velocity components

\(x,r\) :

Cylindrical coordinates

\(\rho\) :

Fluid density

\(m\) :

Fitted rate constant

\(D_{B}\) :

Brownian diffusion coefficient

a, c :

Constants

\(\varGamma\) :

Material parameter

\(T\) :

Temperature of fluid

\(T_{w}\) :

Surface temperature

\(T_{\infty }\) :

Ambient fluid temperature

\(C\) :

Concentration of nanofluid

\(n\) :

Power law index

\(\mu\) :

Generalized Newtonian viscosity

\(c_{p}\) :

Specific heat

\(C_{w}\) :

Surface concentration

\(u_{w}\) :

Stretching velocity

\(\nu\) :

Kinematic viscosity

\(\mu_{0}\) :

Shear viscosity

\(D_{T}\) :

Thermophoretic force

\(\tau\) :

Ratio parameter

\(C_{\infty }\) :

Ambient nanoparticle concentration

\(k^{*}\) :

Mean absorption coefficient

\(\beta_{0}\) :

Magnetic field strength

\(\alpha_{m}\) :

Thermal conductivity

\(\sigma^{*}\) :

Stefan Boltzmann

\(\left( {\rho c} \right)_{f}\) :

Capacity of heat for base liquid

\(\tau_{w}\) :

Surface shear stress

\(\eta\) :

Non-dimensional variable

\(\psi\) :

Stream function

\({\text{We}}\) :

Local Weissenberg number

\(M\) :

Parameter for magnetic field

\(\gamma\) :

Curvature parameter

\({ \Pr }\) :

PRANDTL number

\(\sigma\) :

Reaction rate parameter

\(A\) :

Time-dependent parameter

\(E\) :

Parameter for activation energy

\(N_{t}\) :

Thermophoresis parameter

\(\delta\) :

Temperature difference parameter

\(N_{b}\) :

Parameter of Brownian moment

\(\theta_{f}\) :

Temperature ratio parameter

\(N_{R}\) :

Radiation parameter

\(\gamma_{\text{1}}\) :

Biot number

\({\text{Re}}\) :

Local Reynolds number

\(f\) :

Non-dimensional velocity

θ :

Temperature

ϕ :

Concentration

\(\tau_{rx}\) :

Wall shear stress

\(q_{w}\) :

Wall heat flux

\({\text{Nu}}\) :

Local Nusselt number

\(C_{f}\) :

Drag force

\({\text{Sc}}\) :

Schmidt number

\(\left( {h,h^{*} } \right)\) :

Temperature-dependent/space dependent heat sink/source coefficients

\(Q^{'''}\) :

Non-uniform heat sink/source

\(\left( {\delta_{1} ,\delta_{2} } \right)\) :

Dimensionless space–time dependent heat sink/source

References

  1. Abbas Z, Sheikh M, Motsa SS (2016) Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95:12–20

    CAS  Article  Google Scholar 

  2. Abbas SZ, Khan WA, Sun H, Ali M, Irfan M, Shahzed M, Sultan F (2019) Mathematical modeling and analysis of Cross nanofluid flow subjected to entropy generation. Nanosci, Appl. https://doi.org/10.1007/s13204-019-01039-9

    Google Scholar 

  3. Ali M, Sultan F, Khan WA, Shahzad M (2019) Exploring the physical aspects of nanofluid with entropy generation. Appl Nanosci. https://doi.org/10.1007/s13204-019-01173-4

    Article  Google Scholar 

  4. Animasaun IL, Mahanthesh B, Jagun AO, Bankole TD, Sivaraj R, Shah NA, Saleem S (2018) Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–Water nanofluid on an upper horizontal surface of a paraboloid of revolution. J Heat Transf 141(2):022402

    Article  Google Scholar 

  5. Bestman AR (1990) Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res 14:389–396

    CAS  Article  Google Scholar 

  6. Dhlamini M, Kameswaran PK, Sibanda P, Motsa S, Mondal H (2019) Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions. J Comput Des Eng 6:149–158

    Google Scholar 

  7. Farooq S, Ijaz Khan M, Hayat T, Waqas M, Alsaedi A (2019) Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J Mol Liq 285:314–322

    CAS  Article  Google Scholar 

  8. Gireesha BJ, Kumar PBS, Mahanthesh B, Shehzad SA, Rauf A (2017) Nonlinear 3D flow of Casson-Carreau fluids with homogeneous–heterogeneous reactions: a comparative study. Results Phys 7:2762–2770

    Article  Google Scholar 

  9. Hayat T, Qayyum S, Waqas M, Alsaedi A (2016) Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq 224:801–810

    CAS  Article  Google Scholar 

  10. Hayat T, Waqas M, Alsaedi A, Bashir G, Alzahrani F (2017) Magnetohydrodynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. J Mol Liq 229:178–184

    CAS  Article  Google Scholar 

  11. Hayat T, Khan MWA, Khan MI, Waqas M, Alsaedi A (2018) Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk. Phys B 538:138–149

    CAS  Article  Google Scholar 

  12. Ijaz M, Ayub M (2019) Activation energy and dual stratification effects for Walter-B fluid flow in view of Cattaneo-Christov double diffusionon. Heliyon 5:e01815

    CAS  Article  Google Scholar 

  13. Irfan M, Khan M, Khan WA, Ayaz M (2018) Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys Lett A 382(30):1992–2002

    CAS  Article  Google Scholar 

  14. Irfan M, Khan WA, Khan M, Gulzar MM (2019a) Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J Phys Chem Solids 125:141–152

    CAS  Article  Google Scholar 

  15. Irfan M, Khan M, Gulzar MM, Khan WA (2019b) Chemically reactive and nonlinear radiative heat flux in mixed convection flow of Oldroyd-B nanofluid. Appl Nanosci. https://doi.org/10.1007/s13204-019-01052-y

    Article  Google Scholar 

  16. Khan WA, Ali M (2019) Recent developments in modeling and simulation of entropy generation for dissipative cross material with quartic autocatalysis. Appl Phys A 125:397. https://doi.org/10.1007/s00339-019-2686-6

    CAS  Article  Google Scholar 

  17. Khan M, Khan WA (2015) Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet. AIP Adv 5:107138. https://doi.org/10.1063/1.4935043

    CAS  Article  Google Scholar 

  18. Khan M, Khan WA (2016a) MHD boundary layer flow of a power-law nanofluid with new mass flux condition. AIP Adv 6:025211. https://doi.org/10.1063/1.4942201

    CAS  Article  Google Scholar 

  19. Khan M, Khan WA (2016b) Steady flow of Burgers’ nanofluid over a stretching surface with heat generation/absorption. J Braz Soc Mech Sci Eng 38(8):2359–2367

    CAS  Article  Google Scholar 

  20. Khan WA, Khan M, Alshomrani AS (2016a) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick’s mass flux models. J Mol Liq 223:1039–1047

    CAS  Article  Google Scholar 

  21. Khan WA, Alshomrani AS, Khan M (2016b) Assessment on characteristics of heterogeneous-homogenous processes in three-dimensional flow of Burgers fluid. Results Phys 6:772–779

    Article  Google Scholar 

  22. Khan M, Khan WA, Alshomrani AS (2016c) Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect. Int J Heat Mass Transf 101:570–576

    CAS  Article  Google Scholar 

  23. Khan MI, Waqas M, Hayat T, Khan MI, Alsaedi A (2017a) Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface. J Mol Liq 246:259–267

    CAS  Article  Google Scholar 

  24. Khan WA, Irfan M, Khan M, Alshomrani AS, Alzahrani AK, Alghamdi MS (2017b) Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid. J Mol Liq 234:201–208

    CAS  Article  Google Scholar 

  25. Khan WA, Alshomrani AS, Alzahrani AK, Khan M, Irfan M (2018a) Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow. Pramana J Phys 91:63. https://doi.org/10.1007/s12043-018-1634-x

    CAS  Article  Google Scholar 

  26. Khan M, Irfan M, Khan WA (2018b) Thermophysical properties of unsteady 3D flow of magneto Carreau fluid in the presence of chemical species: a numerical approach. J Braz Soc Mech Sci Eng 40:108. https://doi.org/10.1007/s40430-018-0964-4

    CAS  Article  Google Scholar 

  27. Khan WA, Ali M, Sultan F, Shahzad M, Khan M, Irfan M (2019a) Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magnetofluid. Pramana J Phys 92:16. https://doi.org/10.1007/s12043-018-1678-y

    CAS  Article  Google Scholar 

  28. Khan WA, Sultan F, Ali M, Shahzad M, Khan M, Irfan M (2019b) Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer. J Braz Soc Mech Sci Eng 41:44. https://doi.org/10.1007/s40430-018-1482-0

    CAS  Article  Google Scholar 

  29. Khan WA, Waqas M, Ali M, Sultan F, Shahzad M, Irfan M (2019c) Mathematical analysis of thermally radiative time-dependent Sisko nanofluid flow for curved surface. Int J Numer Methods Heat Fluid Flow 29(9):3498–3514

    Article  Google Scholar 

  30. Khan MI, Haq F, Hayat T, Alsaedi A, Rahman MU (2019d) Natural bio-convective flow of Sisko nanofluid subject to gyrotactic microorganisms and activation energy. Phys Scr 94:125203

    CAS  Article  Google Scholar 

  31. Khan WA, Ali M, Waqas M, Shahzad M, Sultan F, Irfan M (2019e) Importance of convective heat transfer in flow of non-Newtonian nanofluid featuring Brownian and thermophoretic diffusions. Int J Numer Methods Heat Fluid Flow. https://doi.org/10.1108/HFF-01-2019-0066

    Article  Google Scholar 

  32. Khan WA, Ali M, Irfan M, Khan M, Shahzad M, Sultan F (2019f) A rheological analysis of nanofluid subjected to melting heat transport characteristics. Appl Nanosci. https://doi.org/10.1007/s13204-019-01067-5

    Article  Google Scholar 

  33. Khan MI, Hafeez MU, Hayat T, Khan MI, Alsaedi A (2020) Magneto rotating flow of hybrid nanofluid with entropy generation. Comput Meth Prog Bio 183:105093

    Article  Google Scholar 

  34. Kumar PBS, Gireesha BJ, Mahanthesh B, Chamkha AJ (2019) Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition. J Therm Anal Calorim 136(5):1947–1957

    Article  Google Scholar 

  35. Mahanthesh B, Gireesha BJ, Athira PR (2017) Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate. Results Phys 7:2375–2383

    Article  Google Scholar 

  36. Mahanthesh B, Gireesha BJ, Animasaun IL, Muhammad T, Shashikumar NS (2019) MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys Scr 94(8):085214

    CAS  Article  Google Scholar 

  37. Makinde OD, Olanrewaju PO, Charles WM (2011) Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr Mat 22:65–78

    Article  Google Scholar 

  38. Muhammad S, Ali G, Shah SIA, Irfan M, Khan WA, Ali M, Sultan F (2019) Numerical treatment of activation energy for the three-dimensional flow of a cross magnetonanoliquid with variable conductivity. Pramana J Phys 93:40. https://doi.org/10.1007/s12043-019-1800-9

    Article  Google Scholar 

  39. Sadiq MA, Waqas M, Hayat T (2017) Importance of Darcy–Forchheimer relation in chemically reactive radiating flow towards convectively heated surface. J Mol Liq 248:1071–1077

    CAS  Article  Google Scholar 

  40. Shahzad M, Sun H, Sultan F, Khan WA, Ali M, Irfan M (2019) Transport of radiative heat transfer in dissipative Cross nanofluid flow with entropy generation and activation energy. Phys Scr 94(11):115224

    CAS  Article  Google Scholar 

  41. Sheikholeslami M (2019) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  Google Scholar 

  42. Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf 120:772–781

    CAS  Article  Google Scholar 

  43. Sheikholeslami M, Zeeshan A (2017) Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Meth Appl Mech Eng 320:68–81

    Article  Google Scholar 

  44. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M (2019) Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf 137:1290–1300

    CAS  Article  Google Scholar 

  45. Sohail A, Khan WA, Khan M, Shah SIA (2017) Consequences of non-Fourier’s heat conduction relation and chemical processes for viscoelastic liquid. Results Phys 7:3281–3286

    Article  Google Scholar 

  46. Sultan F, Khan WA, Ali M, Shahzad M, Sun H, Irfan M (2019) Importance of entropy generation and infinite shear rate viscosity for non-newtonian nanofluid. J Braz Soc Mech Sci Eng 41:439. https://doi.org/10.1007/s40430-019-1950-1

    CAS  Article  Google Scholar 

  47. Ullah I, Waqas M, Hayat T, Alsaedi A, Ijaz Khan M (2019) Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J Therm Anal Calorim 135(2):1021–1030

    CAS  Article  Google Scholar 

  48. Waqas M, Jabeen S, Hayat T, Khan MI, Alsaedi A (2019) Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J Magn Magn Mater 485:197–204

    CAS  Article  Google Scholar 

  49. Waqas M, Khan MI, Hayat T, Gulzar MM, Alsaedi A (2020) Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions. Chao Soli Fract 130:109415

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the postdoctoral international exchange program for incoming postdoctoral students, at Beijing Institute of Technology, Beijing, China.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to W. A. Khan or M. Ali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, W.A., Ali, M., Shahzad, M. et al. A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface. Appl Nanosci 10, 3235–3244 (2020). https://doi.org/10.1007/s13204-019-01220-0

Download citation

Keywords

  • Non-uniform heat absorption-generation
  • Nanofluid
  • Non-Newtonian fluid
  • Activation energy