Skip to main content
Log in

Effect of thickness for nanotwins on the mechanical properties of a Hastelloy

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The processes of nanoindentation on Hastelloy alloy with nanoscale twin boundary (TB) are calculated by molecular dynamics (MD). The effect of nanoscale TB’s thickness on the mechanical properties are investigated. The results show that the thickness of nanoscale TBs has obvious influence on the properties of Hastelloy alloy. The TBs obviously play the role of obstacle when the crystal lattice was destroyed by the force of indenter. Although the nanoscale twin boundaries can resist the movement to a certain extent, it does not mean that the thicker nanoscale TBs make the properties better. In these simulations, the Hall–Petch effect and the reverse Hall–Petch effect are observed, and the critical value of thickness is 25.493 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277

    Article  CAS  Google Scholar 

  • Chen K, Wu W, Liao C, Chen L, Tu K (2008) Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321(5892):1066–1069

    Article  CAS  Google Scholar 

  • Cui J, Zhang Z, Jiang H et al (2019a) Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 13(7):7483–7492

    Article  CAS  Google Scholar 

  • Cui J, Zhang Z, Liu D et al (2019b) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19(9):6569–6576

    Article  CAS  Google Scholar 

  • Edalati K, Toh S, Furuta T, Kuramoto S, Watanabe M, Horita Z (2012) Development of ultrahigh strength and high ductility in nanostructured iron alloys with lattice softening and nanotwins. Scr Mater 67(5):511–514

    Article  CAS  Google Scholar 

  • Gandhi VCS, Ramesh S, Kumaravelan R (2012) Evaluation of the contact parameters of a structural rigid sphere and a deformable flat contact model by considering the strain hardening effect. J Eng Technol 2(2):97

    Article  Google Scholar 

  • Kobler A, Beuth T, Klöffel T, Prang R, Moosmann M, Scherer T, Walheim S, Hahn H, Kübel C, Meyer B (2015) Nanotwinned silver nanowires: structure and mechanical properties. Acta Mater 92(15):299–308

    Article  CAS  Google Scholar 

  • Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304(5669):422–426

    Article  CAS  Google Scholar 

  • Lu L, Schwaige R, Shan Z, Dao M, Lu K, Suresh S (2005) Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater 53(7):2169–2179

    Article  CAS  Google Scholar 

  • Lu K, Lu L, Suresh S (2009a) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925):349–352

    Article  CAS  Google Scholar 

  • Lu L, Chen X, Huang X, Lu K (2009b) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610

    Article  CAS  Google Scholar 

  • Luo X, Zhu X, Zhang G (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5(5):3021

    Article  Google Scholar 

  • Shaw LL, Tian J, Ortiz AL, Dai K, Villegas JC, Liaw PK, Ren R, Klarstrom DL (2010) A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy. Mater Sci Eng A 527(4–5):986–994

    Article  Google Scholar 

  • Wang B, Zhang Z, Cui J, Jiang N (2017) In situ TEM study of interaction between dislocations and a single nanotwin under nanoindentation. ACS Appl Mater Inter 9:29451–29456

    Article  CAS  Google Scholar 

  • Wang B, Zhang Z, Chang K et al (2018) New deformation-induced nanostructure in silicon. Nano Lett 18(7):4611–4617

    Article  CAS  Google Scholar 

  • Wu Y, Adams GG (2009) Plastic yield conditions for adhesive contacts between a rigid sphere and an elastic half-space. J Tribol 131(1):011403–011409

    Article  Google Scholar 

  • Zhang Y, Tao NR, Lu K (2008) Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater 56(11):2429–2440

    Article  CAS  Google Scholar 

  • Zhang Z, Song Y, Xu C et al (2012a) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67(2):197–200

    Article  CAS  Google Scholar 

  • Zhang Z, Huo F, Zhang X et al (2012b) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Mater 67(7–8):657–660

    Article  CAS  Google Scholar 

  • Zhang Z, Huo Y, Huo F et al (2013a) Ultrahigh hardness and synergistic mechanism of a nanotwinned structure of cadmium zinc telluride. Scripta Mater 68(9):747–750

    Article  CAS  Google Scholar 

  • Zhang Z, Li F, Ma G et al (2013b) Ultrahigh hardness and improved ductility for nanotwinned mercury cadmium telluride. Scripta Mater 69(3):231–234

    Article  CAS  Google Scholar 

  • Zhang Z, Bo W, Zhang X (2014) A maximum in the hardness of nanotwinned cadmium telluride. Scr Mater 72–73(2):39–42

    Article  Google Scholar 

  • Zhang Z, Wang B, Kang R et al (2015a) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64(1):349–352

    Article  Google Scholar 

  • Zhang Z, Guo D, Wang B et al (2015b) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395

    Article  CAS  Google Scholar 

  • Zhang Z, Huang S, Chen L, Wang B, Wen B, Zhang B, Guo D (2017) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900

    Article  CAS  Google Scholar 

  • Zhu T, Li J, Samanta A, Kim HG, Subra S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci USA 104(9):3031–3036

    Article  CAS  Google Scholar 

  • Zhu Y, Liao X, Wu X (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge for the financial support from the Fundamental Research for the Central Universities (DUT16QY46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Guo, M., Wang, L. et al. Effect of thickness for nanotwins on the mechanical properties of a Hastelloy. Appl Nanosci 10, 1475–1480 (2020). https://doi.org/10.1007/s13204-019-01209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01209-9

Keywords

Navigation