Skip to main content
Log in

Facile synthesis of Zn3(VO4)2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

First time, a novel Zn3(VO4)2/FeVO4 heterojunction nanophotocatalyst has been prepared using the slightly modified hydrothermal method by varying precursor ratios of iron and zinc salts. The physio-chemical characterizations of as-prepared nanocomposites were carried out by XRD, FESEM, EDS, XPS, BET, UV–Vis, PL, CV and EIS. Effect of molar ratio showed that Zn3(VO4)2/FeVO4 nanocomposite with molar ratio 1:1 exhibited excellent photocatalytic activity than pure single Zn3(VO4)2 and FeVO4 photocatalysts by completely degrading the Rhodamine-B (Rh-B) dye solution at pH-3. The Zn3(VO4)2/FeVO4 composite was also used for the electrochemical identification of ascorbic acid and glucose. This study provides first-hand information about the potential of vanadate-based nanocomposites for the photocatalytic degradation of organic pollutants and electrochemical sensing of various analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ali A, Oh W-C (2017) J Korean Ceram Soc 54:388–394

    CAS  Google Scholar 

  • Alloyeau D, Mottet C, Ricolleau C (2012) Nanoalloys: Synthesis; structure and properties. Springer Science & Business Media, New York

    Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Catal Today 53:51–59

    CAS  Google Scholar 

  • Baojun M, Keying L, Weiguang S, Wanyi L (2014) Appl Surf Sci 317:682–687

    Google Scholar 

  • Beltrán A, Gracia L, Andrés J, Longo E (2017) J Phys Chem C 121:27624–27642

    Google Scholar 

  • Biswas SK, Baeg J-O (2013) Int J Hydrogen Energy 38:14451–14457

    CAS  Google Scholar 

  • Bondarenka V, Grebinskij S, Kaciulis S, Mattogno G, Mickevicius S, Tvardauskas H, Volkov V, Zakharova G (2001) J Electron Spectrosc Relat Phenom 120:131–135

    CAS  Google Scholar 

  • Chaiwichian S, Inceesungvorn B, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2014) Mater Res Bull 54:28–33

    CAS  Google Scholar 

  • Chang X, Yu G, Huang J, Li Z, Zhu S, Yu P, Cheng C, Deng S, Ji G (2010) Catal Today 153:193–199

    CAS  Google Scholar 

  • Chen S, Zhang S, Zhao W, Liu W (2009) J Nanopart Res 11:931–938

    CAS  Google Scholar 

  • Chou S-Y, Chung W-H, Chen L-W, Dai Y-M, Lin W-Y, Lin J-H, Chen C-C (2016) RSC Adv 6:82743–82758

    CAS  Google Scholar 

  • Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee K-S, Kim T, Shin H, Sinha AK, Kwon SG (2017) J Am Chem Soc 139:6669–6674

    CAS  Google Scholar 

  • Dai G, Yu J, Liu G (2011) J Phys Chem C 115:7339–7346

    CAS  Google Scholar 

  • Dandapat A, De G (2011) ACS Appl Mater Interfaces 4:228–234

    Google Scholar 

  • Du Y, Khan S, Zhang X, Yu G, Liu R, Zheng B, Nadimicherla R, Wu D, Fu R (2019) Carbon 149:144–151

    CAS  Google Scholar 

  • Fatima S, Ali SI, Iqbal MZ, Rizwan S (2017) RSC Adv 7:35928–35937

    CAS  Google Scholar 

  • Gao X, Wu HB, Zheng L, Zhong Y, Hu Y, Lou XWD (2014) Angew Chem 126:6027–6031

    Google Scholar 

  • Guan M-L, Ma D-K, Hu S-W, Chen Y-J, Huang S-M (2010) Inorg Chem 50:800–805

    Google Scholar 

  • Hng HH, Knowles KM (1999) J Eur Ceram Soc 19:721–726

    CAS  Google Scholar 

  • Imam SS, Zango ZU, Abdullahi H (2018) Am Sci Res J Eng Technol Sci 41:26–39

    Google Scholar 

  • Irfan S, Li L, Saleemi AS, Nan C-W (2017a) J Mater Chem A 5:11143–11151

    CAS  Google Scholar 

  • Irfan S, Shen Y, Rizwan S, Wang HC, Khan SB, Nan CW (2017b) J Am Ceram Soc 100:31–40

    CAS  Google Scholar 

  • Iwashita N (2016) Chapter 2—X-ray powder diffraction. In: Inagaki M, Kang F (eds) Materials science and engineering of carbon. Butterworth-Heinemann, Oxford, pp 7–25

    Google Scholar 

  • Ji Y, Cao J, Jiang L, Zhang Y, Yi Z (2014) J Alloy Compd 590:9–14

    CAS  Google Scholar 

  • Jiang H-Q, Endo H, Natori H, Nagai M, Kobayashi K (2009) Mater Res Bull 44:700–706

    CAS  Google Scholar 

  • Jiang Y-R, Lin H-P, Chung W-H, Dai Y-M, Lin W-Y, Chen C-C (2015) J Hazard Mater 283:787–805

    CAS  Google Scholar 

  • Jiang Y, Liu P, Tian S, Liu Y, Peng Z, Li F, Ni L, Liu Z (2017) J Taiwan Inst Chem Eng 78:517–529

    CAS  Google Scholar 

  • Kang S, Zhang L, Liu C, Huang L, Shi H, Cui L (2017) Int J Electrochem Sci 12:5284–5293

    CAS  Google Scholar 

  • Karamat S, Rawat R, Lee P, Tan T, Ramanujan R, Zhou W (2010) Appl Surf Sci 256:2309–2314

    CAS  Google Scholar 

  • Khan SB, Hou M, Shuang S, Zhang Z (2017) Appl Surf Sci 400:184–193

    CAS  Google Scholar 

  • Khan MYA, Zahoor M, Shaheen A, Jamil N, Arshad MI, Bajwa SZ, Shad NA, Butt R, Ali I, Iqbal MZ (2018) Mater Res Bull 104:38–43

    Google Scholar 

  • Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J, Lou H, Xie Y, Fu R, Wu D (2018) Chem Commun 54:7159–7162

    CAS  Google Scholar 

  • Li J, Zhao W, Guo Y, Wei Z, Han M, He H, Yang S, Sun C (2015) Appl Surf Sci 351:270–279

    CAS  Google Scholar 

  • Liu CJ, Xu YH (2011) Adv Mater Res Trans Tech Publ 148:1469–1472

  • Liu Z, Sun DD, Guo P, Leckie JO (2007) Nano Lett 7:1081–1085

    CAS  Google Scholar 

  • Liu X, Cao H, Yin J (2011) Nano Res 4:470–482

    CAS  Google Scholar 

  • Liu M, Xue X, Yu S, Wang X, Hu X, Tian H, Chen H, Zheng W (2017) Sci Rep 7:3637

    Google Scholar 

  • Ma H, Yang X, Tao Z, Liang J, Chen J (2011) CrystEngComm 13:897–901

    CAS  Google Scholar 

  • Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249–261

    CAS  Google Scholar 

  • Moscow S, Jothivenkatachalam K, Jaganathan K (2012) Struct Opt Study Titan Dioxide Thin Films Prep Sol-Gel Tech 24:46

    Google Scholar 

  • Owusu PA, Asumadu-Sarkodie S (2016) Cogent Eng 3:1167990

    Google Scholar 

  • Pei L, Lin N, Wei T, Liu H, Yu H (2015) J Mater Chem A 3:2690–2700

    CAS  Google Scholar 

  • Sajid MM, Khan SB, Shad NA, Amin N, Zhang Z (2018a) RSC Adv 8:23489–23498

    CAS  Google Scholar 

  • Sajid MM, Khan SB, Shad NA, Amin N (2018b) RSC Advances 8:35403–35412

    CAS  Google Scholar 

  • Sajid MM, Amin N, Shad NA, Javed Y, Zhang Z (2019a) Mater Sci Eng, B 242:83–89

    CAS  Google Scholar 

  • Sajid MM, Shad NA, Khan SB, Zhang Z, Amin N (2019b) J Alloy Compd 775:281–289

    CAS  Google Scholar 

  • Sajid MM, Shad NA, Javed Y, Khan SB, Imran Z, Hassan S, Hussain Z, Zhang Z, Amin N (2019c) Arab J Sci Eng 44:6659–6667

    CAS  Google Scholar 

  • Sayılkan F, Erdemoğlu S, Asiltürk M, Akarsu M, Şener Ş, Sayılkan H, Erdemoğlu M, Arpaç E (2006) Mater Res Bull 41:2276–2285

    Google Scholar 

  • Şen Z (2017) Int J Energy Res 41:229–239

    Google Scholar 

  • Shad NA, Sajid MM, Amin N, Javed Y, Akhtar K, Ahmad G, Hassan S, Ikram M (2019a) Ceram Int 45:19015–19021

  • Shad NA, Sajid MM, Haq A-U, Amin N, Imran Z, Anwar H, Ali K, Hussain Z, Younus A, Javed Y (2019b) Arab J Sci Eng 44:6669–6675

    CAS  Google Scholar 

  • Shen G, Pan L, Lü Z, Wang C, Zhang X, Zou J-J (2018) Chin J Catal 39:920–928

    CAS  Google Scholar 

  • Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc Relat Phenom 135:167–175

    CAS  Google Scholar 

  • Subramanian M, Dhayabaran VV, Sastikumar D, Shanmugavadivel M (2018) J Alloy Compd 750:153–163

    CAS  Google Scholar 

  • Taabouche A (2015) Thèse de Doctorat. Université de Constantine 1, pp 1–97

  • Wang C, Shaw LL (2014) J Sol–Gel Sci Technol 72:602–614

    CAS  Google Scholar 

  • Wang Z, Huang B, Dai Y, Qin X, Zhang X, Wang P, Liu H, Yu J (2009) J Phys Chem C 113:4612–4617

    CAS  Google Scholar 

  • Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D (2019) Adv Mater 31:1802922

    Google Scholar 

  • Xie Y, Yin J, Zheng J, Wang L, Wu J, Dresselhaus MS, Zhang X (2019) ACS Appl Mater Interfaces 11(35):32244–32250

  • Yang W, Tan G, Huang J, Ren H, Xia A, Zhao C (2015) Ceram Int 41:1495–1503

    CAS  Google Scholar 

  • Yuan Q, Chen L, Xiong M, He J, Luo S-L, Au C-T, Yin S-F (2014) Chem Eng J 255:394–402

    CAS  Google Scholar 

  • Zeng D, Yang K, Yu C, Chen F, Li X, Wu Z, Liu H (2018) Appl Catal B Environ 237:449–463

  • Zhang L, Tan G, Wei S, Ren H, Xia A, Luo Y (2013) Ceram Int 39:8597–8604

    CAS  Google Scholar 

  • Zhao W, Guo Y, Faiz Y, Yuan W-T, Sun C, Wang S-M, Deng Y-H, Zhuang Y, Li Y, Wang X-M (2015) Appl Catal B 163:288–297

    CAS  Google Scholar 

  • Zhou Y, Krumeich F, Heel A, Patzke GR (2010) Dalton Trans 39:6043–6048

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Zhengjun Zhang, Tsinghua University, Beijing, China for supporting characterization techniques and keen interest.

Funding

The authors did not receive financial support for this work from any agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Munir Sajid or Nasir Amin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Shad, N.A., Javed, Y. et al. Facile synthesis of Zn3(VO4)2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties. Appl Nanosci 10, 421–433 (2020). https://doi.org/10.1007/s13204-019-01199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01199-8

Keywords

Navigation