Skip to main content
Log in

Palladium nanoparticles uniformly and firmly supported on hierarchical flower-like TiO2 nanospheres as a highly active and reusable catalyst for detoxification of Cr(VI)-contaminated water

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The rational design of highly active and stable nanocatalysts towards the detoxification of Cr(VI)-contaminated water is of great importance for environmental remediation. In the present work, a novel Pd-based hybrid nanomaterial, composed of Pd nanoparticles (Pd NPs) supported on three-dimensional hierarchical titania nanoflowers (fTiO2), was fabricated and systematically investigated as the catalyst of chromium detoxification. Pd NPs with diameter of ~ 2.8 nm were found to be uniformly and firmly supported onto the crystalline nanosheets of fTiO2. More importantly, the highly open porous flower-like architecture of Pd NPs/fTiO2 could not only endow the catalyst with high surface area (237.5 m2 g−1) and large pore volume (0.86 cm3 g−1), but also facilitate reactant diffusion and exposure of active sites. Benefitting from these remarkable features, the Pd NPs/fTiO2 exhibited superior catalytic performance for reduction of Cr(VI) in the presence of formic acid. The TOF reached up to 633.0 h−1, which was several and even more than one hundred times as high as those obtained by previously reported supported Pd-based catalysts. Moreover, the catalytic activity of Pd NPs/fTiO2 could remain almost unchanged after being recycled several times, demonstrating its long-term stability. Therefore, the Pd NPs/fTiO2 would be promising for practical wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari Z, Saha A, Sen K (2017) On the kinetics of block copolymer mediated palladium quantum dot synthesis: application in reduction of Cr(VI) to Cr(III). React Funct Polym 114:23–30

    CAS  Google Scholar 

  • Bao SJ, Lei C, Xu MW, Cai CJ, Cheng CJ, Li CM (2013) Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm 15:4694–4699

    CAS  Google Scholar 

  • Bhowmik K, Mukherjee A, Mishra MK, De G (2014) Stable Ni nanoparticle-reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 30:3209–3216

    CAS  Google Scholar 

  • Celebi M, Yurderi M, Bulut A, Kaya M, Zahmakiran M (2016) Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl Catal B 180:53–64

    CAS  Google Scholar 

  • Chen J, Zhu L (2007) Heterogeneous UV–Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catal Today 126:463–470

    CAS  Google Scholar 

  • Chen H, Shao Y, Xu Z, Wan H, Wan Y, Zheng S, Zhu D (2011) Effective catalytic reduction of Cr(VI) over TiO2 nanotube supported Pd catalysts. Appl Catal B 105:255–262

    CAS  Google Scholar 

  • Dandapat A, Jana D, De G (2011) Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl Catal A 396:34–39

    CAS  Google Scholar 

  • Deng B, Stone AT (1996) Surface-catalyzed chromium (VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces. Environ Sci Technol 30:2484–2494

    CAS  Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    CAS  Google Scholar 

  • Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558

    CAS  Google Scholar 

  • Fu GT, Jiang X, Wu R, Wei SH, Sun DM, Tang YW, Lu TH, Chen Y (2014) Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl Mater Interfaces 6:22790–22795

    CAS  Google Scholar 

  • Gao Y, Sun W, Yang W, Li Q (2018) Palladium nanoparticles supported on amine-functionalized glass fiber mat for fixed-bed reactors on the effective removal of hexavalent chromium by catalytic reduction. J Mater Sci Technol 34:961–968

    Google Scholar 

  • Gong K, Wang W, Yan J, Han Z (2015) Highly reduced molybdophosphate as a noble-metal-free catalyst for the reduction of chromium using formic acid as a reducing agent. J Mater Chem A 3:6019–6027

    CAS  Google Scholar 

  • Gupta A, Dhakate SR, Gurunathan P, Ramesha K (2017) High rate capability and cyclic stability of hierarchically porous Tin oxide (IV)-carbon nanofibers as anode in lithium ion batteries. Appl Nanosci 7:449–462

    CAS  Google Scholar 

  • Han SH, Bai J, Liu HM, Zeng JH, Jiang JX, Chen Y, Lee JM (2016) One-pot fabrication of hollow and porous Pd–Cu alloy nanospheres and their remarkably improved catalytic performance for hexavalent chromium reduction. ACS Appl Mater Interfaces 8:30948–30955

    CAS  Google Scholar 

  • Hu CY, Lo SL, Liou YH, Hsu YW, Shih K, Lin CJ (2010) Hexavalent chromium removal from near natural water by copper–iron bimetallic particles. Water Res 44:3101–3108

    CAS  Google Scholar 

  • Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, Zhu M, Shi X (2012) Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl Mater Interfaces 4:3054–3061

    CAS  Google Scholar 

  • Jitputti J, Rattanavoravipa T, Chuangchote S, Pavasupree S, Suzuki Y, Yoshikawa S (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382

    CAS  Google Scholar 

  • Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2002) Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J Catal 208:310–320

    CAS  Google Scholar 

  • Keith L, Telliard W (1979) ES&T special report: priority pollutants: Ia perspective view. Environ Sci Technol 13:416–423

    Google Scholar 

  • Kim JD, Choi HC (2016) Efficient catalytic reduction of hexavalent chromium with Pd-decorated carbon nanotubes. Bull Korean Chem Soc 37:744–747

    CAS  Google Scholar 

  • Kondo JN, Takahara Y, Lu D, Domen K (2001) Mesoporous Ta oxide. 2. Improvement of the synthetic method and observation of mesostructure formation. Chem Mater 13:1200–1206

    CAS  Google Scholar 

  • Li HC, Liu WJ, Han HX, Yu HQ (2016a) Hydrophilic swellable metal–organic framework encapsulated Pd nanoparticles as an efficient catalyst for Cr(VI) reduction. J Mater Chem A 4:11680–11687

    CAS  Google Scholar 

  • Li HT, Gao Q, Han B, Ren ZH, Xia KS, Zhou CG (2016b) Partial-redox-promoted Mn cycling of Mn(II)-doped heterogeneous catalyst for efficient H2O2-mediated oxidation. ACS Appl Mater Interfaces 9:371–380

    Google Scholar 

  • Li M, Gao Q, Wang T, Gong YS, Han B, Xia KS, Zhou CG (2016c) Solvothermal synthesis of MnxFe3−xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Mater Des 97:341–348

    CAS  Google Scholar 

  • Li X, Yu J, Jaroniec M (2016d) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636

    CAS  Google Scholar 

  • Liang M, Su R, Qi W, Zhang Y, Huang R, Yu Y, Wang L, He Z (2014) Reduction of hexavalent chromium using recyclable Pt/Pd nanoparticles immobilized on procyanidin-grafted eggshell membrane. Ind Eng Chem Res 53:13635–13643

    CAS  Google Scholar 

  • Mao L, Wang Y, Zhong Y, Ning J, Hu Y (2013) Microwave-assisted deposition of metal sulfide/oxide nanocrystals onto a 3D hierarchical flower-like TiO2 nanostructure with improved photocatalytic activity. J Mater Chem A 1:8101–8104

    CAS  Google Scholar 

  • Noyori R, Hashiguchi S (1997) Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc Chem Res 30:97–102

    CAS  Google Scholar 

  • Omole MA, K’Owino IO, Sadik OA (2007) Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl Catal B 76:158–167

    CAS  Google Scholar 

  • Omole MA, Okello VA, Lee V, Zhou L, Sadik OA, Umbach C, Sammakia B (2011) Catalytic reduction of hexavalent chromium using flexible nanostructured poly(amic acids). ACS Catal 1:139–146

    CAS  Google Scholar 

  • Pan JH, Wang XZ, Huang Q, Shen C, Koh ZY, Wang Q, Engel A, Bahnemann DW (2014) Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv Funct Mater 24:95–104

    CAS  Google Scholar 

  • Qin G, McGuire MJ, Blute NK, Seidel C, Fong L (2005) Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study. Environ Sci Technol 39:6321–6327

    CAS  Google Scholar 

  • Ren ZH, Li HT, Gao Q, Wang H, Han B, Xia KS, Zhou CG (2017) Au nanoparticles embedded on urchin-like TiO2 nanosphere: an efficient catalyst for dyes degradation and 4-nitrophenol reduction. Mater Des 121:167–175

    CAS  Google Scholar 

  • Sarkar B, Naidu R, Krishnamurti GS, Megharaj M (2013) Manganese (II)-catalyzed and clay-minerals-mediated reduction of chromium (VI) by citrate. Environ Sci Technol 47:13629–13636

    CAS  Google Scholar 

  • Schleich B, Schmeisser D, Göpel W (1987) Structure and reactivity of the system Si/SiO2/Pd: a combined XPS, UPS and HREELS study. Surf Sci 191:367–384

    CAS  Google Scholar 

  • Shao FQ, Feng JJ, Lin XX, Jiang LY, Wang AJ (2017) Simple fabrication of AuPd@Pd core-shell nanocrystals for effective catalytic reduction of hexavalent chromium. Appl Catal B 208:128–134

    CAS  Google Scholar 

  • Shrivastava KC, Chappa S, Sengupta A, Srivastava AP, Pandey AK, Ramakumar KL (2016) Palladium nanoparticles hosted on hydrazine-grafted magnetite and silica particles to catalyze the reduction of oxymetal ions with formic acid. ChemCatChem 8:2981–2987

    CAS  Google Scholar 

  • Su N, Chen X, Ren Y, Yue B, Wang H, Cai W, He H (2015) The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation. Catal Commun 51:7195–7198

    CAS  Google Scholar 

  • Thapa AK, Pandit B, Paudel HS, Thapa R, Ida S, Jasinski JB, Sumanasekera GU, Ishihara T (2014) Polythiophene mesoporous birnessite-MnO2/Pd cathode air electrode for rechargeable Li-air battery. Electrochim Acta 127:410–415

    CAS  Google Scholar 

  • Tu W, Li K, Shu X, Yu WW (2013) Reduction of hexavalent chromium with colloidal and supported palladium nanocatalysts. J Nanopart Res 15:1593–1601

    Google Scholar 

  • Tuo Y, Liu G, Zhou J, Wang A, Wang J, Jin R, Lv H (2013) Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresour Technol 133:606–611

    CAS  Google Scholar 

  • Veerakumar P, Thanasekaran P, Lin KC, Liu SB (2017) Biomass derived sheet-like carbon/palladium nanocomposite: an excellent opportunity for reduction of toxic hexavalent chromium. ACS Sustain Chem Eng 5:5302–5312

    CAS  Google Scholar 

  • Wei LL, Gu R, Lee JM (2015) Highly efficient reduction of hexavalent chromium on amino-functionalized palladium nanowires. Appl Catal B 176–177:325–330

    Google Scholar 

  • Xu H, Wu Z, Ding M, Gao X (2017) Microwave-assisted synthesis of flower-like BN/BiOCl composites for photocatalytic Cr(VI) reduction upon visible-light irradiation. Mater Des 114:129–138

    CAS  Google Scholar 

  • Yadav M, Xu Q (2013) Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem Commun 49:3327–3329

    CAS  Google Scholar 

  • Yang C, Yi H (2010) Facile approaches to control catalytic activity of viral-templated palladium nanocatalysts for dichromate reduction. Biochem Eng J 52:160–167

    CAS  Google Scholar 

  • Yang C, Choi CH, Lee CS, Yi H (2013) A facile synthesis–fabrication strategy for integration of catalytically active viral-palladium nanostructures into polymeric hydrogel microparticles via replica molding. ACS Nano 7:5032–5044

    CAS  Google Scholar 

  • Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–558

    CAS  Google Scholar 

  • Yu X, Zhao Z, Zhang J, Guo W, Li L, Liu H, Wang ZL (2017) One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm 19:129–136

    CAS  Google Scholar 

  • Yurderi M, Bulut A, Zahmakiran M, Kaya M (2014) Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition. Appl Catal B 160–161:514–524

    Google Scholar 

  • Zhang W, He Y, Zhang M, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916

    CAS  Google Scholar 

  • Zhang S, Chang CR, Huang ZQ, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y (2016) High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J Am Chem Soc 138:2629–2637

    CAS  Google Scholar 

  • Zhang L, Guo Y, Iqbal A, Li B, Deng M, Gong D, Liu W, Qin W (2017) Palladium nanoparticles as catalysts for reduction of Cr(VI) and Suzuki coupling reaction. J Nanopart Res 19:150–163

    Google Scholar 

  • Zhou J, Han Y, Wang W, Xu Z, Wan H, Yin D, Zheng S, Zhu D (2013) Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts. Appl Catal B 134:222–230

    Google Scholar 

  • Zhu W, Xiao S, Zhang D, Liu P, Zhou H, Dai W, Liu F, Li H (2015) Highly efficient and stable Au/CeO2–TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment. Langmuir 31:10822–10830

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21303170), Natural Science Foundation of Hubei Province (No. 2015CFB187), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL150414, CUGL140413 and CUG120115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Gao or Hongquan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, M., Gao, Q. et al. Palladium nanoparticles uniformly and firmly supported on hierarchical flower-like TiO2 nanospheres as a highly active and reusable catalyst for detoxification of Cr(VI)-contaminated water. Appl Nanosci 10, 359–369 (2020). https://doi.org/10.1007/s13204-019-01164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01164-5

Keywords

Navigation