Skip to main content
Log in

Magnetic switching field distribution and morphology in electrodeposited Ni@Cu coaxial nanotubes

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Using magnetic measurements structural irregularities in electrodeposited nanotubes are inferred. The correlation between morphology and magnetic properties is very useful for studying materials. Through the use of the magnetic switching field distribution, the association with the surface irregularities imperfections of the magnetic nanotubes was performed. The distribution of magnetic switching field presents well behaved in smooth-surface nanotubes and, for nanotubes with irregularities, the distribution of switching fields has a noisy behavior, added to that smoothed signal. This noise is due to the superficial irregularities on the tubes surface because the magnetic barriers occurring in imperfect structures. Pinning centers due to irregularities are the principal aspect to observe in this situation. Magnetic measurements were associated directly to the morphology obtained by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bachmann J, Escrig J, Pitzschel K, Montero Moreno JM, Jing J, Görlitz D, Altbir D, Nielsch K (2009) Size effects in ordered arrays of magnetic nanotubes: pick your reversal mode. J Appl Phys 105:07B521

    Article  Google Scholar 

  • Chen M, Searson PC (2003) Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires. J Appl Phys 93:8253

    Article  CAS  Google Scholar 

  • Chen AP, Guslienko KY, Gonzalez J (2010) Magnetization configurations and reversal of thin magnetic nanotubes with uniaxial anisotropy. J Appl Phys 108:083920

    Article  Google Scholar 

  • Chen YH, Duan JL, Yao HJ, Mo D, Liu TQ, Wang TS, Hou MD, Sun YM, Liu J (2014) Facile preparation and magnetic properties of Ni nanotubes in polycarbonate ion-track templates. Phys B 441:1

    Article  CAS  Google Scholar 

  • Chen Y, Duan J, Yao H, Mo D, Wang T, Sun Y, Liu J (2015) Preparation and magnetic properties of Cu–Ni core–shell nanowires in ion-track templates. J Wuhan Univ Technol Mater Sci Ed 30:665–669

    Article  CAS  Google Scholar 

  • Chen Y, Xu C, Zhou Y, Maaz K, Yao Mo D, Lyu S, Duan J, Liu J (2016) Temperature- and angle-dependent magnetic properties of ni nanotube arrays fabricated by electrodeposition in polycarbonate templates. Nanomaterials (Basel) 6:231

    Article  Google Scholar 

  • Coey J (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis DM, Moldovan M, Young DP, Henk Xie X, Podlaha EJ (2006) Magnetoresistance in electrodeposited CoNiFe/Cu multilayered nanotubes. Electrochem Solid St 9:C153–C155

    Article  CAS  Google Scholar 

  • Davis D, Zamanpour M, Moldovan M, Young D, Podlaha EJ (2010) Electrodeposited, GMR CoNiFeCu nanowires and nanotubes from electrolytes maintained at different temperatures. J Electrochem Soc 157:D317–D322

    Article  CAS  Google Scholar 

  • Garcia JM, Asenjo A, Vazquez M, Aranda P, Ruiz-Hitzky E (2000) Characterization of cobalt nanowires by means of force microscopy. IEEE Trans Magn 36:2981–2983

    Article  CAS  Google Scholar 

  • Gomes JL, Padrón-Hernández E (2017) Step by step reversion study in ordered array of nickel nanotubes. Mater Res Express 4:126107

    Article  Google Scholar 

  • Haehnel V, Fähler S, Schaaf P, Miglierini M, Mickel C, Schultz L, Schlörb H (2010) Toward smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58:2330

    Article  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  CAS  Google Scholar 

  • Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gösele U (2001) Hexagonally ordered 100 nm period nickel nanowire arrays. Appl Phys Lett 79:1360

    Article  CAS  Google Scholar 

  • Padrón Hernández E, Rezende SM, Azevedo A (2008) Effective field investigation in arrays of polycrystalline ferromagnetic nanowires. J Appl Phys 103:07D506

    Article  Google Scholar 

  • Pitzschel K, Bachmann J, Montero-Moreno JM, Escrig J, Görlitz D, Nielsch K (2012) Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes. Nanotechnology 23:495718

    Article  Google Scholar 

  • Proenca MP, Sousa CT, Ventura J, Vazquez M, Araujo JP (2012) Distinguishing nanowire and nanotube formation by the deposition current transients. Nanoscale Res Lett 280:7

    Google Scholar 

  • Ross CA, Hwang M, Shima M, Cheng JY, Farhoud M, Savas TA, Smith HI, Schwarzacher W, Ross FM, Redjdal M, Humphrey FB (2002) Micromagnetic behavior of electrodeposited cylinder arrays. Phys Rev B 65:144417

    Article  Google Scholar 

  • Sultan MS (2017) Angular dependence of switching behaviour in template released isolated NiFe nanowires. Phys Lett A 381:3896–3903

    Article  CAS  Google Scholar 

  • Vázquez Manuel (2015) Electrochemical synthesis and magnetism of magnetic nanotubes, In Woodhead Publishing Series in Electronic and Optical Materials, Magnetic Nano- and Microwires. Woodhead Publishing, Sawston

    Google Scholar 

  • Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125:1–2

    Article  CAS  Google Scholar 

  • Wang Y, Chen Z, Li H, Zhang J, Yan X, Jiang K, Engelsen D, Ni L, Xiang D (2016) The synthesis and electrochemical performance of coreeshell structured Ni–Al layered double hydroxide carbon nanotubes composites. Electrochim Acta 222:185–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sergio Santos, Tarcyla Andrade, Alexandre Ricalde for magnetic and structural measurements. The authors are grateful to the Brazilian Agencies: CAPES, CNPq, FINEP and FACEPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Padrón-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves-Araujo, J., Von Paulo, I.M. & Padrón-Hernández, E. Magnetic switching field distribution and morphology in electrodeposited Ni@Cu coaxial nanotubes. Appl Nanosci 10, 623–631 (2020). https://doi.org/10.1007/s13204-019-01126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01126-x

Keywords

Navigation