Skip to main content
Log in

Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are useful for radiotherapy. Currently, efforts are underway globally for the development of novel titanium dioxide NPs (TiO2-NPs) that exhibit both contrast effects and anti-tumor effects. In this study, the image contrast properties of TiO2-NPs were evaluated using a clinical magnetic resonance imaging (MRI) system and a clinical computed tomography (CT) scanner, as the use of TiO2-NPs as an anti-cancer agent has been reported in several reports. An obvious difference in visualization was observed between the control and TiO2-NP samples on T2-weighted images. These results suggest that TiO2 can potentially be used as a novel theranostic drug with radiosensitizing ability and radiological diagnostic ability, through modification of chemical groups on its surface, and as a component of drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akasaka H, Sasaki R, Miyawaki D, Mukumoto N, Sulaiman NS, Nagata M, Yamada S, Murakami M, Demizu Y, Fukumoto T (2014) Preclinical evaluation of bioabsorbable polyglycolic acid spacer for particle therapy. Int J Radiat Oncol Biol Phys 90(5):1177–1785. https://doi.org/10.1016/j.ijrobp.2014.07.048

    Article  CAS  Google Scholar 

  • Akasaka H, Mizushina Y, Yoshida K, Ejima Y, Mukumoto N, Wang T, Inubushi S, Nakayama M, Wakahara Y, Sasaki R (2016) MGDG extracted from spinach enhances the cytotoxicity of radiation in pancreatic cancer cells. Radiat Oncol 11(1):153

    Article  Google Scholar 

  • Allison RR, Bagnato VS, Sibata CH (2010) Future of oncologic photodynamic therapy. Future Oncol 6(6):929–940

    Article  CAS  Google Scholar 

  • Azizian G, Riyahi-Alam N, Haghgoo S, Moghimi HR, Zohdiaghdam R, Rafiei B, Gorji E (2012) Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale Res Lett 7(1):549

    Article  Google Scholar 

  • Babaei M, Ganjalikhani M (2014) The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 4(1):15

    CAS  Google Scholar 

  • Bernard BK, Osheroff MR, Hofmann A, Mennear JH (1990) Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Environ Health 29(4):417–429

    Article  CAS  Google Scholar 

  • Bischoff F, Bryson G (1982) Tissue reaction to and fate of par-enterally administered titanium dioxide. I. The intraperitoneal site in male Marsh-Buffalo mice. Res Commun Chem Pathol Pharmacol 38(2):279–290

    CAS  Google Scholar 

  • Bump EA, Hoffman SJ, Foye WO, Abraham DJ (2003) Radiosensitizers and radioprotective agents. In: Abraham DJ (ed) Chemotherapeutic drugs, Burger’s medicinal chemistry and drug discovery, vol 5. Wiley, New York, pp 151–211

    Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637

    Article  CAS  Google Scholar 

  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82(3):151–157

    Article  CAS  Google Scholar 

  • Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19(35):6258–6266

    Article  CAS  Google Scholar 

  • Garnica-Garza HM (2009) Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys Med Biol 54(18):5411–5425

    Article  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  CAS  Google Scholar 

  • Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, Zhang J, He S, Liang XJ (2013) Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73(1):319–330

    Article  CAS  Google Scholar 

  • Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141(1–3):3–15

    Article  CAS  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  Google Scholar 

  • Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S (2011) Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 22(15):155101

    Article  Google Scholar 

  • Leon S, Zdenka K, Kostya O, Shailesh K (2012) Nanoparticles in cancer imaging and therapy. J Nanomater 2012, Article ID 891318

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  • Nakayama M, Sasaki R, Ogino C, Tanaka T, Morita K, Umetsu M, Ohara S, Tan Z, Nishimura Y, Akasaka H, Sato K, Numako C, Takami S, Kondo A (2016) Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol 11(1):91

    Article  Google Scholar 

  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  Google Scholar 

  • Ruba T, Tamilselvi R (2018) Radiosensitizers and radioprotectors for effective radiation therapy—a review. Asian J Appl Sci Eng 2(1):77–86

    Google Scholar 

  • Service RF (2005) Materials and biology: nanotechnology takes aim at cancer. Science 310(5751):1132–1134

    Article  Google Scholar 

  • Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8(1):70

    Article  Google Scholar 

  • Townley HE, Kim J, Dobson PJ (2012) In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 4(16):5043–5050

    Article  CAS  Google Scholar 

  • Wilson BC, Patterson MS (2008) The physics, biophysics, and technology of photodynamic therapy. Phy Med Biol 53(9):R61–R109

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y, Terasaka S, Iwasaki Y (2010) Novel photodynamic therapy using water-dispersed TiO2 polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochem Photobiol 86(4):964–971

    Article  CAS  Google Scholar 

  • Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667

    Article  CAS  Google Scholar 

  • Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263(1):81–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Akasaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akasaka, H., Mukumoto, N., Nakayama, M. et al. Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. Appl Nanosci 10, 3143–3148 (2020). https://doi.org/10.1007/s13204-019-01098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01098-y

Keywords

Navigation