Skip to main content
Log in

The magnetism enhancement and spin transport in zigzag borophene nanoribbons edge-passivated by N atoms

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

We study the effects of edge passivation by N atoms on the magnetic and electrical properties of zigzag borophene nanoribbons (ZBNRs) employing the density functional theory combined with the non-equilibrium Green’s function method. Significant enhancement on the edge magnetism is found in general, in contrast to the magnetism suppression in hydrogenated ZBNRs, and half-metallicity can be observed in some special cases. Different from the graphene nanoribbons, the properties of ZBNRs are sensitive to the ribbon width, since their electronic structures fluctuate greatly with the width. Magnetism and conductivity change sharply and the ground state jumps back and forth between the ferromagnetic and antiferromagnetic configurations as the ribbon width increases. Spin-dependent negative differential resistivity may be realized in N-passivated ZBNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bezanilla AL, Littlewood PB (2016) Electronic properties of 8-Pmmn borophene. Phys Rev B 93:241405(R)

    Article  Google Scholar 

  • Brandbyge M, Mozos JL, Ordejon P, Taylor J, Scokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  • Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New York

    Book  Google Scholar 

  • Dong YJ, Wang XF, Yang SW, Wu XM (2014) High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes. Sci Rep 4:6157

    Article  Google Scholar 

  • Feng YP, Shen L, Yang M, Wang AZ, Zeng MG, Wu QY, Chintalapati S, Chang CR (2017a) Prospects of spintronics based on 2D materials. WIREs Comput Mol Sci 7:e1313

    Article  Google Scholar 

  • Feng BJ, Sugino O, Liu RY, Zhang J (2017b) Dirac fermions in borophene. Phys Rev Lett 118:096401

    Article  Google Scholar 

  • Fuente AG, Carrete J, Vega A, Gallego LJ (2017) How will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties. Phys Chem Chem Phys 19:1054–1061

    Article  Google Scholar 

  • Gao M, Li QZ, Yan XW, Wang J (2017) Prediction of phonon mediated superconductivity in borophene. Phys Rev B 95:024505

    Article  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  • Giannopoulos GI (2017) Mechanical behavior of planar borophenes: a molecular mechanics study. Comput Mater Sci 129:304–310

    Article  CAS  Google Scholar 

  • Gupta AS, Seal S, Sakthivel T (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  • Jiang C, Wang XF, Zhai MX (2014) Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon 68:406–412

    Article  CAS  Google Scholar 

  • Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104

    Article  CAS  Google Scholar 

  • Kan EJ, Li ZY, Yang JL, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224–4225

    Article  CAS  Google Scholar 

  • Li YF, Zhou Z, Shen PW, Chen ZF (2009) Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3:1952–1958

    Article  CAS  Google Scholar 

  • Liu YX, Dong YJ, Tang ZY, Wang XF, Wang L, Hou TJ, Lin HP, Li YY (2016) Stable and metallic borophene nanoribbons from first-principles calculations. J Mater Chem C 4:6380

    Article  CAS  Google Scholar 

  • Liu G, Wang H, Gao Y, Zhou J, Wang H (2017) Anisotropic intrinsic lattice thermal conductivity of borophene from first-principles calculations. Phys Chem Chem Phys 19:2843–2849

    Article  CAS  Google Scholar 

  • Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu XL, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  CAS  Google Scholar 

  • Meng FC, Chen XG, Sun SS, He J (2017) Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Phys E 112:91106

    Google Scholar 

  • Peng B, Zhang H, Shao H, Xu YF, Zhang RJ, Zhu HY (2016) The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J Mater Chem C 4:3592–3598

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  • Rao DW, Zhang LY, Meng ZS, Zhang XR, Wang YH, Qiao GJ, Shen XQ, Xia H, Liu JH, Lu RF (2017) Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J Mater Chem A 5:2328–2338

    Article  CAS  Google Scholar 

  • Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    Article  CAS  Google Scholar 

  • Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  • Vishkayi SI, Tagani MB (2018) Edge-dependent electronic and magnetic characteristics of freestanding β12-borophene nanoribbons. Nano Micro Lett 10:14

    Article  Google Scholar 

  • Wang V, Geng WT (2017) Lattice defects and the mechanical anisotropy of borophene. J Phys Chem C 121:10224–10232

    Article  CAS  Google Scholar 

  • Wang XF, Hu YB, Guo H (2012) Robustness of helical edge states in topological insulators. Phys Rev B 85:241402(R)

    Article  Google Scholar 

  • Wang H, Li Q, Gao Y, Miao F, Zhou XF, Wan XG (2016) Strain effects on borophene: ideal strength, negative Possion’s ratio and phonon instability. New J Phys 18:073016

    Article  Google Scholar 

  • Wu TT, Wang XF, Zhai MX, Liu H, Zhou LP, Jiang YJ (2012) Negative differential spin conductance in doped zigzag graphene nanoribbons. Appl Phys Lett 100:052112

    Article  Google Scholar 

  • Xiao RC, Shao DF, Lu WJ (2016) Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl Phys Lett 109:122604

    Article  Google Scholar 

  • Xu MS, Liang T, Shi MM, Chen HZ (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  Google Scholar 

  • Yung KC, Wu WM, Pierpoint MP, Kusmartsev FV (2013) Introduction to graphene electronics—a new era of digital transistors and devices. Contemp Phys 54:233–251

    Article  CAS  Google Scholar 

  • Zhai MX, Wang XF (2016) Atomistic switch of giant magnetoresistance and spin thermopower in graphene-like nanoribbons. Sci Rep 6:36762

    Article  CAS  Google Scholar 

  • Zhao YC, Zeng SM (2016) Phonon-mediated superconductivity in borophenes. App Phys Lett 108:242601

    Article  Google Scholar 

  • Zheng XH, Wang XL, Abtew TA, Zeng Z (2010) Building half-metallicity in graphene nanoribbons by direct control over edge states occupation. J Phys Chem C 114:4190–4193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61674110, 6167204, and 11274238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Wang.

Ethics declarations

Conflict of interest

None of the authors of this manuscript have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, XF., Zhou, LP. et al. The magnetism enhancement and spin transport in zigzag borophene nanoribbons edge-passivated by N atoms. Appl Nanosci 10, 29–35 (2020). https://doi.org/10.1007/s13204-019-01092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01092-4

Keywords

Navigation