Skip to main content
Log in

Nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s Cantor fractal wall structure

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The detection of ultra-low concentration of biomacromolecules remains the focus of research in micro-nanofluidic systems. Sample enrichment is primarily targeted at very low concentration of sample detection tasks. The use of ion concentration polarization principle is the most efficient means to solve the problem of electrokinetic ion enrichment. In this paper, numerical simulation of nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s Cantor fractal wall structure was performed based on Poisson–Nernst–Planck equation combined with the Navier–Stokes equation. The results show that reducing the initial length L0, increasing the initial height h0, increasing the fractal step n and using the unstaggered structure in the Cantor fractal principle can increase the ion enrichment concentration and peak voltage. The initial ion concentration is 0.1 mol/m3. When the applied voltage is 30 V and the initial height h0 increases from 35 to 45 nm, the ion enrichment concentration drastically increases from 1.007 to 1.410 mol/m3 by 40%. This study provides a theoretical basis and a novel design method for improving the sensitivity of micro-nanofluidic chips and the design of ultra-low concentration sample testing equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

x :

Horizontal coordinate

y :

Vertical coordinate

l 1 :

Microchannel length

l 2 :

Nanochannel length

d 1 :

Microchannel width

d 2 :

Nanochannel width

L 0 :

Initial length in Cantor fractal principle

h 0 :

Initial height in Cantor fractal principle

X :

Number of asperities on a repeating segment

n :

Fractal step

N :

Number of ion species in solution

e :

Elementary charge

p :

Pressure

j :

Species flux

u :

Fluid velocity

D k :

Ion diffusion coefficient

z k :

The valence of the kth ion

n k :

Concentration of the kth ion

ϕ :

Potential

ρ e :

Volumetric charge density

ε 0 :

Electrical permittivity of the vacuum

ε r :

Relative permittivity

ρ 0 :

Fluid density

μ :

Dynamic viscosity of fluid

ω k :

Electrophoretic mobility

k :

The kth species

+:

Positive mono-valence

−:

Negative mono-valence

⊥:

Normal component

References

  • Ali M, Khan WA, Irfan M et al (2019) Computational analysis of entropy generation for cross-nanofluid flow. Appl Nanosci. https://doi.org/10.1007/s13204-019-01038-w

    Article  Google Scholar 

  • Amoyav B, Benny O (2018) Controlled and tunable polymer particles’ production using a single microfluidic device. Appl Nanosci 8:905–914

    Article  CAS  Google Scholar 

  • Cabodi M, Turner SWP, Craighead HG (2002) Entropic recoil separation of long DNA molecules. Anal Chem 74(20):5169–5174

    Article  CAS  Google Scholar 

  • Chen Y, Fu P, Zhang C et al (2010) Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. Int J Heat Fluid Flow 31(4):622–629

    Article  Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4(1):137–142

    Article  CAS  Google Scholar 

  • Eijkel JCT, Van Den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1(3):249–267

    Article  CAS  Google Scholar 

  • Gao H, Xie MR, Liu JJ et al (2018) Electrokinetic stacking on paper-based analytical device by ion concentration polarization with ion exchange membrane interface. Microfluid Nanofluid 22(5):50

    Article  Google Scholar 

  • Gong L, Ouyang W, Li Z et al (2018) Direct numerical simulation of continuous lithium extraction from high Mg2 +/Li + ratio brines using microfluidic channels with ion concentration polarization. J Membr Sci 556:34–41

    Article  CAS  Google Scholar 

  • Hasham AA, Abedini A, Jatukaran A et al (2018) Visualization of fracturing fluid dynamics in a nanofluidic chip. J Petrol Sci Eng 165:181–186

    Article  CAS  Google Scholar 

  • Jia M, Kim T (2014) Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices. Anal Chem 86(15):7360–7367

    Article  CAS  Google Scholar 

  • Jia H, Li Z, Liu C et al (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem Int Ed 49(32):5498–5501

    Article  CAS  Google Scholar 

  • Kim SJ, Han J (2008) Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal Chem 80(9):3507–3511

    Article  CAS  Google Scholar 

  • Kim SJ, Ko SH, Kang KH et al (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297

    Article  CAS  Google Scholar 

  • Lee JH, Chung S, Kim SJ et al (2007) Poly (dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal Chem 79(17):6868–6873

    Article  CAS  Google Scholar 

  • Li M, Anand RK (2016) Recent advancements in ion concentration polarization. Analyst 141(12):3496–3510

    Article  CAS  Google Scholar 

  • Lin CC, Hsu JL, Lee GB (2011) Sample preconcentration in microfluidic devices. Microfluid Nanofluid 10(3):481–511

    Article  Google Scholar 

  • Lin CY, Yeh LH, Siwy ZS (2018) Voltage-induced modulation of ionic concentrations and ion current rectification in mesopores with highly charged pore walls. J Phys Chem Lett 9(2):393–398

    Article  CAS  Google Scholar 

  • Liu L, Xie MR, Chen YZ et al (2019) Simultaneous electrokinetic stacking and separation of anionic and cationic species on a paper fluidic channel. Lab Chip 19(5):845–850

    Article  CAS  Google Scholar 

  • MacDonald BD, Gong MM, Zhang P et al (2014) Out-of-plane ion concentration polarization for scalable water desalination. Lab Chip 14(4):681–685

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2011) Electrokinetic transport through nanochannels. Electrophoresis 32(11):1259–1267

    Article  CAS  Google Scholar 

  • Mozaffari S, Tchoukov P, Mozaffari A et al (2017) Capillary driven flow in nanochannels–application to heavy oil rheology studies. Colloids Surf, A 513:178–187

    Article  CAS  Google Scholar 

  • Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155

    Article  CAS  Google Scholar 

  • Pu Q, Yun J, Temkin H et al (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103

    Article  CAS  Google Scholar 

  • Rissin DM, Kan CW, Campbell TG et al (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28(6):595

    Article  CAS  Google Scholar 

  • Shi YZ, Xiong S, Zhang Y et al (2018a) Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9(1):815

    Article  CAS  Google Scholar 

  • Shi Y, Xiong S, Chin LK et al (2018b) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773

    Article  Google Scholar 

  • Silber-Li ZH, Zheng X, Kong GP et al (2012) Vortices in micro/nano channel flows. WIT Trans Eng Sci 74:533–545

    Article  Google Scholar 

  • Srinivasacharya D, Surender O (2015) Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium[J]. Appl Nanosci 5(1):29–38

    Article  CAS  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D et al (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7(4):1022–1025

    Article  Google Scholar 

  • Wang YC, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8(3):392–394

    Article  CAS  Google Scholar 

  • Wang Y, Pant K, Chen Z et al (2009) Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow[J]. Microfluid Nanofluid 7(5):683

    Article  CAS  Google Scholar 

  • Wang J, Xu Z, Li Y et al (2013) Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip. Appl Phys Lett 103(4):043103

    Article  Google Scholar 

  • Wang G, Yang F, Zhao W et al (2016a) On micro-electrokinetic scalar turbulence in microfluidics at a low reynolds number. Lab Chip 16(6):1030–1038

    Article  CAS  Google Scholar 

  • Wang J, Liu C, Xu Z (2016b) Electrokinetic ion transport in confined micro-nanochannel. Electrophoresis 37(5–6):769–774

    Article  CAS  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368

    Article  CAS  Google Scholar 

  • Wu D, Steckl AJ (2009) High speed nanofluidic protein accumulator. Lab Chip 9(13):1890–1896

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Key Project of Department of Education of Liaoning Province (JZL201715401), Liaoning Province BaiQianWan Talent Project. We sincerely thank Prof. Chong Liu for his kind guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Chen, X. Nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s Cantor fractal wall structure. Appl Nanosci 10, 95–105 (2020). https://doi.org/10.1007/s13204-019-01049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01049-7

Keywords

Navigation