Skip to main content
Log in

Plasmon-induced anti-transparency modes in metasurface

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

We investigate plasmon-induced anti-transparency (PIAT) modes with a metallic metasurface on a dielectric substrate through the finite-element method. Multiple spectral splits are achieved by breaking the symmetry of square-ring resonators. The asymmetry of the structure is attained by incorporating cuts in the rings and increasing displacement of cuts in opposite directions. The high asymmetry decreases the spectral width and enhances the intensity of PIAT resonances. A unified mechanism for generating the PIAT resonances and plasmon-induced transparency (PIT) resonances is studied and agrees with the simulation results. These resonances are highly sensitive to the type of background materials and can be used for detecting cancerous and healthy tissues. A high figure-of-merit (FoM) of 808 is calculated for biosensing. The multiple high-quality factor resonances can also be used for optical filters (band-stop filtering for PIAT modes and band-pass filtering for PIT modes), slow light devices, and switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzetta G (1997) Induced transparency. Phys Today 50:36–42

    Google Scholar 

  • Aouani H, Rahmani M, Sipova H, Torres V, Ki Hegnerová, Beruete M, Homola J, Hong M et al (2013) Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies. J Phys Chem C 117:18620–18626

    CAS  Google Scholar 

  • Beutler H (1935) Über Absorptionsserien von Argon, Krypton und Xenon zu Termen zwischen den beiden Ionisierungsgrenzen 2 P 3 2/0 und 2 P 1 2/0. Zeitschrift Physik 93:177–196

    Google Scholar 

  • Brown LV, Zhao K, King N, Sobhani H, Nordlander P, Halas NJ (2013) Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J Am Chem Soc 135:3688–3695

    CAS  Google Scholar 

  • Cao G, Li H, Deng Y, Zhan S, He Z, Li B (2014) Plasmon-induced transparency in a single multimode stub resonator. Opt Express 22:25215–25223

    Google Scholar 

  • Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19:5970–5978

    Google Scholar 

  • Cong L, Manjappa M, Xu N, Al-Naib I, Zhang W, Singh R (2015) Fano resonances in terahertz metasurfaces: a figure of merit optimization. Adv Opt Mater 3:1537–1543

    CAS  Google Scholar 

  • Dayal G, Chin XY, Soci C, Singh R (2017) High‐Q Plasmonic Fano Resonance for Multiband Surface‐Enhanced Infrared Absorption of Molecular Vibrational Sensing, Adv Opt Mater 5

    Google Scholar 

  • Deng Z-L, Dong J-W (2013) Lasing in plasmon-induced transparency nanocavity. Opt Express 21:20291–20302

    Google Scholar 

  • Dong Z-G, Liu H, Cao J-X, Li T, Wang S-M, Zhu S-N, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97:114101

    Google Scholar 

  • Dyer GC, Aizin GR, Allen SJ, Grine AD, Bethke D, Reno JL, Shaner EA (2013) Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat Photonics 7:925

    CAS  Google Scholar 

  • Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866

    CAS  Google Scholar 

  • Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Phys E 104:233–240

    CAS  Google Scholar 

  • Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    CAS  Google Scholar 

  • Giannios P, Koutsoumpos S, Toutouzas KG, Matiatou M, Zografos GC, Moutzouris K (2017) Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J Biophotonics 10:303–310

    CAS  Google Scholar 

  • Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Luo X (2012) Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt Express 20:24348–24355

    Google Scholar 

  • Gupta M, Singh R (2016) Toroidal versus Fano Resonances in High Q planar THz Metamaterials. Adv Opt Mater 4:2119–2125

    CAS  Google Scholar 

  • Hoffmann JM, Janssen H, Chigrin DN, Taubner T (2014) Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography. Opt Express 22:14425–14432

    CAS  Google Scholar 

  • Huck C, Neubrech F, Vogt J, Toma A, Gerbert D, Katzmann J, Härtling T, Pucci A (2014) Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8:4908–4914

    CAS  Google Scholar 

  • Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    CAS  Google Scholar 

  • Kim J, Soref R, Buchwald WR (2010) Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial. Opt Express 18:17997–18002

    CAS  Google Scholar 

  • Lee K-L, Huang J-B, Chang J-W, Wu S-H, Wei P-K (2015) Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci Rep 5:8547

    Google Scholar 

  • Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19:8912–8919

    CAS  Google Scholar 

  • Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Google Scholar 

  • Lu X, Shi J, Liu R, Guan C (2012) Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials. Opt Express 20:17581–17590

    Google Scholar 

  • Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater 9

    CAS  Google Scholar 

  • Muhammad N, Khan AD (2015) Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics 10:1687–1693

    CAS  Google Scholar 

  • Muhammad N, Khan AD (2016) Electromagnetically Induced Transparency and Sharp Asymmetric Fano Line Shapes in All-Dielectric Nanodimer, Plasmonics:1-9

  • Muhammad N, Khan AD, Deng Z-L, Khan K, Yadav A, Liu Q, Ouyang Z (2017) Plasmonic Spectral Splitting in Ring/Rod Metasurface. Nanomaterials 7:397

    Google Scholar 

  • Muhammad N, Fu T, Liu Q, Tang X, Deng Z-L, Ouyang Z (2018) Plasmonic Metasurface Absorber Based on Electro-Optic Substrate for Energy Harvesting. Materials 11:2315

    Google Scholar 

  • Muhammad N, Ouyang Z, Liu Q, Tang X, Deng Z-L, Khan AD (2019a) Sensitive label-free sensor with high figure of merit based on plasmonic metasurface with unit cell of double two-split nanorings. J Mater Sci 54:6301–6309

    CAS  Google Scholar 

  • Muhammad N, Liu Q, Tang X, Fu T, Daud Khan A, Ouyang Z (2019) Highly flexible and voltage based wavelength tunable biosensor, Phys Status Solidi A:1800633

    Google Scholar 

  • Pan M, Liang Z, Wang Y, Chen Y (2016) Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons. Sci Rep 6:29984

    CAS  Google Scholar 

  • Rahmani M, Luk’yanchuk B, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7:329–349

    CAS  Google Scholar 

  • Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

  • Singh R, Al-Naib IA, Yang Y, Roy Chowdhury D, Cao W, Rockstuhl C, Ozaki T, Morandotti R et al (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99:201107

    Google Scholar 

  • Srivastava YK, Manjappa M, Cong L, Cao W, Al-Naib I, Zhang W, Singh R (2016) Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: strong Influence of Metallic Conductivity at Extremely Low Asymmetry. Adv Opt Mater 4:457–463

    CAS  Google Scholar 

  • Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators. Sensors 17:784

    Google Scholar 

  • Tassin P, Zhang L, Koschny T, Economou E, Soukoulis CM (2009) Planar designs for electromagnetically induced transparency in metamaterials. Opt Express 17:5595–5598

    CAS  Google Scholar 

  • Wu PC, Chen WT, Yang K-Y, Hsiao CT, Sun G, Liu AQ, Zheludev NI, Tsai DP (2012) Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics 1:131–138

    CAS  Google Scholar 

  • Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:5753

    CAS  Google Scholar 

  • Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104

    Google Scholar 

  • Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Google Scholar 

  • Zhang Z, Huo F, Zhang X, Guo D (2012a) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67:657–660

    CAS  Google Scholar 

  • Zhang Z, Song Y, Xu C, Guo D (2012b) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scr Mater 67:197–200

    CAS  Google Scholar 

  • Zhang Z, Song Y, Huo F, Guo D (2012c) Nanoscale material removal mechanism of soft-brittle HgCdTe single crystals under nanogrinding by ultrafine diamond grits. Tribol Lett 46:95–100

    Google Scholar 

  • Zhang Z, Huo Y, Guo D (2013a) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    CAS  Google Scholar 

  • Zhang Z, Zhang X, Xu C, Guo D (2013b) Characterization of nanoscale chips and a novel model for face nanogrinding on soft-brittle HgCdTe films. Tribol Lett 49:203–215

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Kang R, Zhang B, Guo D (2016a) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep 6:26891

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B (2016b) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466

    CAS  Google Scholar 

  • Zhang Z, Wang B, Huang S, Wen B, Yang S, Zhang B, Lin C-T, Jiang N et al (2016c) A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. Mater Des 106:313–320

    CAS  Google Scholar 

  • Zhang Z, Huang S, Chen L, Wang B, Wen B, Zhang B, Guo D (2017) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900

    CAS  Google Scholar 

  • Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Google Scholar 

  • Zhao X, Yuan C, Zhu L, Yao J (2016) Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 8:15273–15280

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC (Grant nos.: 61275043, 60877034, 61605128, and 61307048), GDNSF (Grant no.: 2017A030310455), and SZSF (Grant No.: JCYJ20170302151033006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseer Muhammad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, N., Ouyang, Z. Plasmon-induced anti-transparency modes in metasurface. Appl Nanosci 10, 15–22 (2020). https://doi.org/10.1007/s13204-019-01043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01043-z

Keywords

Navigation