Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface

Abstract

To enhance the heat transfer properties within the flow, a newly discovered idea of hybrid nanofluid has been activated. This paper investigates the effect of 3D rotating CNT hybrid nanofluid with magnetic field over a convectively heated and exponentially stretching surface. Two various types of liquids, in particular hybrid nanofluid (SWCNT-MWCNT/Water) and nanofluid (SWCNT-Water) are considered in the present study. Newly demonstrated thermophysical properties are considered. The impacts of different physical parameters on hybrid flow are displayed and discussed briefly. It is observed that the use of hybrid nanofluid would give better heat transfer performance than nanofluid. By choosing different and appropriate nanoparticles’ proportions in hybrid nanofluid, the desired heat transfer rate can be achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Alamri SZ, Khan AA, Azeez M, Ellahi R (2019) Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A 383:276–281

    CAS  Article  Google Scholar 

  2. Ariel PD (2007) The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput Math Appl 54:920–925

    Article  Google Scholar 

  3. Butt AS, Ali A (2015) Investigation of entropy generation effects in magnetohydrodynamic three-dimensional flow and heat transfer of viscous fluid over a stretching surface. J Braz Soc Mech Sci Eng 37:211–219

    CAS  Article  Google Scholar 

  4. Choi SUS (1995) Enhancing conductivity of fluids with nanoparticles, ASME Fluid Eng. Division 231:99–105

    CAS  Google Scholar 

  5. Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transfer 131:33106

    Article  Google Scholar 

  6. Choi SU, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    CAS  Article  Google Scholar 

  7. Devi SSU, Devi SPA (2016) Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys 94:490–496

    CAS  Article  Google Scholar 

  8. Ellahi R, Alamri SZ, Basit A, Majeed A (2018) Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci 12:476–482

    Article  Google Scholar 

  9. Emmanuel S, Khan SK (2006) On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. Int J Therm Sci 45:819–828

    Article  Google Scholar 

  10. Fetecau C, Ellahi R, Khan M, Shah NA (2018) Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J Porous Media. https://doi.org/10.1615/JPorMedia.v21.i7.20

    Article  Google Scholar 

  11. Gupta PS, Gupta AS (1997) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55(6):744–746

    Article  Google Scholar 

  12. Hassan M, Marin M, Alsharif A, Ellahi R (2018) Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A 382:2749–2753

    CAS  Article  Google Scholar 

  13. Hatami M, Hosseinzadeh K, Domairry G, Behnamfar MT (2014) Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates. J Taiwan Inst Chem Eng 45:2238–2245

    CAS  Article  Google Scholar 

  14. Hayat T, Nadeem S (2017) Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys 7:2317–2324

    Article  Google Scholar 

  15. Hayat T, Nadeem S (2018) An improvement in heat transfer for rotating flow of hybrid nanofluid: a numerical study. Can J Phys 96:1420–1430

    CAS  Article  Google Scholar 

  16. Hayat T, Nadeem S, Khan AU (2018) Numerical analysis of Ag–CuO/water rotating Hybrid nanofluid with heat generation/absorption. Can J Phys. https://doi.org/10.1139/cjp-2018-0011

    Article  Google Scholar 

  17. Hussain F, Ellahi R, Zeeshan A (2018) Mathematical models of electro-magnetohydrodynamic multiphase flows synthesis with nano-sized hafnium particles. Appl Sci 8:275

    Article  Google Scholar 

  18. Khan SK, Sanjayanand E (2005) Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet. Int J Heat Mass Transf 48:1534–1542. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2004.10.032

    Article  Google Scholar 

  19. Majeed A, Zeeshan A, Alamri SZ, Ellahi R (2018) Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput Appl 30:1947–1955

    Article  Google Scholar 

  20. Moghadassi A, Ghomi E, Parvizian F (2015) A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci 92:50–57

    CAS  Article  Google Scholar 

  21. Nadeem S, Lee C (2012) Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res Lett 7:94

    Article  Google Scholar 

  22. Nadeem S, Hayat T, Khan AU (2019) Numerical study on 3D rotating hybrid SWCNT-MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr (accepted)

  23. Nasrin R, Alim MA (2014) Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles. J Appl Fluid Mech 7:543–556

    Google Scholar 

  24. Nimmagadda R, Venkatasubbaiah K (2015) Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+ Ag/Water). Eur J Mech 52:19–27

    Article  Google Scholar 

  25. Rao JA, Vasumathi G, Mounica J (2015) Joule heating and thermal radiation effects on MHD boundary layer flow of a nanofluid over an exponentially stretching sheet in a porous medium. World J Mech 5:151

    Article  Google Scholar 

  26. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev 43:164–177

    CAS  Article  Google Scholar 

  27. Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes 75275:1–27

    Google Scholar 

  28. Shampine LF, Gladwell I, Shampine L, Thompson S (2003) Solving ODEs with matlab. Cambridge University Press, Cambridge

    Google Scholar 

  29. Sheikholeslami M (2018) Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq 263:472–488

    CAS  Article  Google Scholar 

  30. Sheikholeslami M (2019a) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318. https://doi.org/10.1016/J.CMA.2018.09.042

    Article  Google Scholar 

  31. Sheikholeslami M (2019b) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333. https://doi.org/10.1016/J.CMA.2018.09.044

    Article  Google Scholar 

  32. Sheikholeslami M (2019c) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  Google Scholar 

  33. Sheikholeslami M, Ganji DD (2017) Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater Des 120:382–393

    CAS  Article  Google Scholar 

  34. Sheikholeslami M, Rokni HB (2017) Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf 115:1203–1233

    CAS  Article  Google Scholar 

  35. Sheikholeslami M, Sadoughi MK (2018) Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf 116:909–919

    CAS  Article  Google Scholar 

  36. Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf 120:772–781. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.12.087

    CAS  Article  Google Scholar 

  37. Sheikholeslami M, Shehzad SA (2018) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192

    CAS  Article  Google Scholar 

  38. Sheikholeslami M, Zeeshan A (2017) Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng 320:68–81

    Article  Google Scholar 

  39. Sheikholeslami M, Zia QM (2016) Ellahi R Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer-Li (KKL) correlation. Appl Sci 6:324

    Article  Google Scholar 

  40. Sheikholeslami M, Jafaryar M, Li Z (2018a) Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq 263:489–500

    CAS  Article  Google Scholar 

  41. Sheikholeslami M, Shehzad SA, Li Z, Shafee A (2018b) Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf 127:614–622

    CAS  Article  Google Scholar 

  42. Sheikholeslami M, Gerdroodbary MB, Moradi R et al (2019a) Application of Neural Network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng 344:1–12. https://doi.org/10.1016/J.CMA.2018.09.025

    Article  Google Scholar 

  43. Sheikholeslami M, Haq R, Shafee A, Li Z (2019b) Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf 130:1322–1342. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.11.020

    CAS  Article  Google Scholar 

  44. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M (2011) Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp 388:41–48

    CAS  Article  Google Scholar 

  45. Tayebi T, Chamkha AJ (2016) Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer Heat Transf Part A Appl 70:1141–1156

    CAS  Article  Google Scholar 

  46. Wang CY (1984) The three-dimensional flow due to a stretching flat surface. Phys Fluids 27:1915–1917

    Article  Google Scholar 

  47. Zeeshan A, Ijaz N, Abbas T, Ellahi R (2018) The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability 10:2671

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Hayat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nadeem, S. & Khan, A.U. Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface. Appl Nanosci 10, 2897–2906 (2020). https://doi.org/10.1007/s13204-019-01036-y

Download citation

Keywords

  • Three-dimensional flow
  • MHD
  • Hybrid nanofluid
  • Convective condition