Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983. https://doi.org/10.1039/c3ra44507k
CAS
Article
Google Scholar
Ansari Mohammad A, Khan Haris M, Khan Aijaz A, Cameotra Swaranjit S, Saquib Q, Musarrat J (2014) Gum arabic capped–silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J Basic Microbiol 54:688–699. https://doi.org/10.1002/jobm.201300748
CAS
Article
Google Scholar
Banerjee SS, Chen D-H (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazardous Mater 147:792–799. https://doi.org/10.1016/j.jhazmat.2007.01.079
CAS
Article
Google Scholar
Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A (2004) FTIR, TEM and NMR iinvestigations of stÃober silica nanoparticles. Mater Sci 10:15692–15697
Google Scholar
Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139. https://doi.org/10.1021/es7032718
CAS
Article
Google Scholar
Biswas P, Sen D, Mazumder S, Basak CB, Doshi P (2016) Temperature mediated morphological transition during drying of spray colloidal droplets. Langmuir 32:2464–2473. https://doi.org/10.1021/acs.langmuir.5b04171
CAS
Article
Google Scholar
Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X (2012) Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 383:96–102. https://doi.org/10.1016/j.jcis.2012.06.027
CAS
Article
Google Scholar
Daoub RMA, Elmubarak AH, Misran M, Hassan EA, Osman ME (2018) Characterization and functional properties of some natural Acacia gums. J Saudi Soc Agric Sci 17:241–249. https://doi.org/10.1016/j.jssas.2016.05.002
Article
Google Scholar
Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Cat Sci Technol 5:2554–2574. https://doi.org/10.1039/C5CY00285K
CAS
Article
Google Scholar
Du Y et al (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200. https://doi.org/10.1016/j.polymer.2017.12.069
CAS
Article
Google Scholar
Fan J, Shi Z, Ge Y, Wang J, Wang Y, Yin J (2012) Gum arabic assisted exfoliation and fabrication of Ag-graphene-based hybrids. J Mater Chem 22:13764–13772. https://doi.org/10.1039/C2JM31437A
CAS
Article
Google Scholar
Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004
CAS
Article
Google Scholar
Haynes Christy L, Yonzon Chanda R, Zhang X, Van Duyne Richard P (2005) Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J Raman Spectrosc 36:471–484. https://doi.org/10.1002/jrs.1376
CAS
Article
Google Scholar
Hsien-Hsueh L, Kan-Sen C, Kuo-Cheng H (2005) Inkjet printing of nanosized silver colloids Nanotechnology 16:2436
Google Scholar
Hu H, Wang Z, Pan L, Zhao S, Zhu S (2010) Ag-Coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742. https://doi.org/10.1021/jp100141c
CAS
Article
Google Scholar
Jana S et al (2006) Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl Cat A 313:41–48. https://doi.org/10.1016/j.apcata.2006.07.007
CAS
Article
Google Scholar
Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735. https://doi.org/10.1021/jp046032g
CAS
Article
Google Scholar
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171. https://doi.org/10.1128/AEM.02001-07
CAS
Article
Google Scholar
Kaegi R et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905. https://doi.org/10.1016/j.envpol.2010.06.009
CAS
Article
Google Scholar
Kattel K et al (2011) A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent ACS. Appl Mater Interfaces 3:3325–3334. https://doi.org/10.1021/am200437r
CAS
Article
Google Scholar
Kawashita M, Toda S, Kim H-M, Kokubo T, Masuda N (2003) Preparation of antibacterial silver-doped silica glass microspheres. J Biomed Mater Res Part A 66A:266–274. https://doi.org/10.1002/jbm.a.10547
CAS
Article
Google Scholar
Kleinman SL et al (2011) Single-molecule surface-enhanced raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133:4115–4122. https://doi.org/10.1021/ja110964d
CAS
Article
Google Scholar
Kneipp K et al (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57:R6281–R6284. https://doi.org/10.1103/physreve.57.r6281
CAS
Article
Google Scholar
Kobayashi Y, Salgueiriño-Maceira V, Liz-Marzán LM (2001) Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem Mater 13:1630–1633. https://doi.org/10.1021/cm001240g
CAS
Article
Google Scholar
Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236. https://doi.org/10.1038/nmat2099. URL: https://www.nature.com/articles/nmat2099#. Accessed 1 Aug 2018
CAS
Article
Google Scholar
Kumar A, Dalal J, Dahiya S, Punia R, Sharma KD, Ohlan A, Maan AS (2019) situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric. Ceram Int 45:1011–1019. https://doi.org/10.1016/j.ceramint.2018.09.280
CAS
Article
Google Scholar
Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354. https://doi.org/10.1016/j.nantod.2015.04.002
CAS
Article
Google Scholar
Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659. https://doi.org/10.1021/la0513306
CAS
Article
Google Scholar
Leng K et al (2018) Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem Commun 54:7159–7162. https://doi.org/10.1039/C8CC03095B
CAS
Article
Google Scholar
Lu R, Zou W, Du H, Wang J, Zhang S (2014) Antimicrobial activity of Ag nanoclusters encapsulated in porous silica nanospheres. Ceram Int 40:3693–3698. https://doi.org/10.1016/j.ceramint.2013.09.055
CAS
Article
Google Scholar
Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Coll Interface Sci 288:444–448. https://doi.org/10.1016/j.jcis.2005.03.005
CAS
Article
Google Scholar
Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd Polym 72:43–51. https://doi.org/10.1016/j.carbpol.2007.07.025
CAS
Article
Google Scholar
Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. https://doi.org/10.1007/s11051-010-9900-y
CAS
Article
Google Scholar
Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. https://doi.org/10.1007/s11051-008-9428-6
CAS
Article
Google Scholar
Midgley PA, Weyland M, Thomas JM, Johnson BFG (2001) Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Commun. https://doi.org/10.1039/b101819c
Article
Google Scholar
Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B (2007) Preparation of acacia-stabilized silver nanoparticles: a green approach. J Appl Polym Sci 106:3375–3381. https://doi.org/10.1002/app.26979
CAS
Article
Google Scholar
Monica P, Endre J, Annette D, Octavian P, Valentin C, Simion A (2011) Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology 22:135101
Article
Google Scholar
Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. In: Hawkes PW (ed) Advances in imaging and electron physics, vol 113. Elsevier, Amsterdam, pp 147–203. https://doi.org/10.1016/S1076-5670(00)80013-0
Chapter
Google Scholar
Obot IB, Umoren SA, Oguzie EE, Ogbobe O, Ebenso EE, Okafor PC (2006) Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti Corros Methods Mater 53:277–282. https://doi.org/10.1108/00035590610692554
CAS
Article
Google Scholar
Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206. https://doi.org/10.1002/jrs.4520
CAS
Article
Google Scholar
Panáček A et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. https://doi.org/10.1021/jp063826h
CAS
Article
Google Scholar
Panáček A, Prucek R, Hrbáč J, Nevečná TJ, Šteffková J, Zbořil R, Kvítek L (2014) Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity. Chem Mater 26:1332–1339. https://doi.org/10.1021/cm400635z
CAS
Article
Google Scholar
Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238. https://doi.org/10.1021/cm061331z
CAS
Article
Google Scholar
Peceros KE, Xu X, Bulcock SR, Cortie MB (2005) Dipole–dipole plasmon interactions in gold-on-polystyrene composites. J Phys Chem B 109:21516–21520. https://doi.org/10.1021/jp0523470
CAS
Article
Google Scholar
Ping G et al (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604
Article
Google Scholar
Potara M, Gabudean A-M, Astilean S (2011) Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles. J Mater Chem 21:3625–3633. https://doi.org/10.1039/c0jm03329d
CAS
Article
Google Scholar
Prucek R et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713. https://doi.org/10.1016/j.biomaterials.2011.03.039
CAS
Article
Google Scholar
Rashid MH, Mandal TK (2007) Synthesis and catalytic application of nanostructured silver dendrites. J Phys Chem C 111:16750–16760. https://doi.org/10.1021/jp074963x
CAS
Article
Google Scholar
Roque ACA, Wilson OC (2008) Adsorption of gum Arabic on bioceramic nanoparticles. Mater Sci Eng C 28:443–447. https://doi.org/10.1016/j.msec.2007.04.009
CAS
Article
Google Scholar
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006
CAS
Article
Google Scholar
Sanchez C, Schmitt C, Kolodziejczyk E, Lapp A, Gaillard C, Renard D (2008) The acacia gum arabinogalactan fraction is a thin oblate ellipsoid: a new model based on small-angle neutron scattering and Ab initio calculation. Biophys J 94:629–639. https://doi.org/10.1529/biophysj.107.109124
CAS
Article
Google Scholar
Sarkar D, Sen D, Nayak BK, Mazumder S, Ghosh A (2017) Spray-dried encapsulated starch and subsequent synthesis of carbon-silica core-shell micro-granules. Coll Surf A 529:696–704. https://doi.org/10.1016/j.colsurfa.2017.06.054
CAS
Article
Google Scholar
Sarkar D, Sen D, Nayak BK, Bhatt P, Deo MN, Dutta B (2018) Biopolymer assisted synthesis of silica-carbon composite by spray drying. Coll Surf B 165:182–190. https://doi.org/10.1016/j.colsurfb.2018.02.040
CAS
Article
Google Scholar
Sawyer DT, McKinnie JM (1960) Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. III. chelates of higher valent ions. J Am Chem Soc 82:4191–4196. https://doi.org/10.1021/ja01501a019
CAS
Article
Google Scholar
Sawyer DT, Paulsen PJ (1959) Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. II. chelates of divalent ions 1. J Am Chem Soc 81:816–820. https://doi.org/10.1021/ja01513a017
CAS
Article
Google Scholar
Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L (2017) Controlling the morphology of ceramic and composite powders obtained via spray drying. A Rev Ceram Int 43:11543–11551. https://doi.org/10.1016/j.ceramint.2017.05.023
CAS
Article
Google Scholar
Umoren SA (2008) Inhibition of aluminium and mild steel corrosion in acidic medium using Gum Arabic. Cellulose 15:751. https://doi.org/10.1007/s10570-008-9226-4
CAS
Article
Google Scholar
Vanloot P, Dupuy N, Guiliano M, Artaud J (2012) Characterisation and authentication of A. senegal and A. seyal exudates by infrared spectroscopy and chemometrics. Food Chem 135:2554–2560. https://doi.org/10.1016/j.foodchem.2012.06.125
CAS
Article
Google Scholar
Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022. https://doi.org/10.1007/s11095-007-9475-1
CAS
Article
Google Scholar
Wang C, Shaw LL (2014) On synthesis of Fe2SiO4/SiO2 and Fe2O3/SiO2 composites through sol–gel and solid-state reactions. J Sol Gel Sci Technol 72:602–614. https://doi.org/10.1007/s10971-014-3483-5
CAS
Article
Google Scholar
Wang J-X, Wen L-X, Wang Z-H, Chen J-F (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 96:90–97. https://doi.org/10.1016/j.matchemphys.2005.06.045
CAS
Article
Google Scholar
Wang Y, Ding X, Chen Y, Guo M, Zhang Y, Guo X, Gu H (2016) Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 101:207–216. https://doi.org/10.1016/j.biomaterials.2016.06.004
CAS
Article
Google Scholar
Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076. https://doi.org/10.1021/ar7000974
CAS
Article
Google Scholar
Xiong R, Lu C, Wang Y, Zhou Z, Zhang X (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910–14918. https://doi.org/10.1039/c3ta13314a
CAS
Article
Google Scholar
Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q (2012) Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J Mater Chem 22:4050–4055. https://doi.org/10.1039/c2jm14410g
CAS
Article
Google Scholar
Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363. https://doi.org/10.1039/c1nr10405e
CAS
Article
Google Scholar
Zhang M et al (2014) Generalized green synthesis of diverse LnF3–Ag hybrid architectures and their shape-dependent SERS performances. RSC Adv 4:9205–9212. https://doi.org/10.1039/c3ra47350c
CAS
Article
Google Scholar
Zhao Y, Luo W, Kanda P, Cheng H, Chen Y, Wang S, Huan S (2013) Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder. Talanta 113:7–13. https://doi.org/10.1016/j.talanta.2013.03.075
CAS
Article
Google Scholar
Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. https://doi.org/10.1021/nl301934w
CAS
Article
Google Scholar