Skip to main content
Log in

High-capability micro-optical buffer based on coupled hexagonal cavity in photonic crystal waveguide

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A high-capability micro-optical buffer (MOB) based on a hexagonal cavity in a photonic crystal waveguide is investigated. The MOB is proposed by breaking the translational symmetry of the periodicity three times after introducing different types of cavities. In each time, we attained ultrahigh group index and highly Q-factor with highest delaying time. Ultrahigh group index of 21030 is obtained with Q-factor of 4309, delaying time of 70.1 ns, and buffer capacity of 8.41 bit. On the other hand, the bit rate and storage density turn into 117.73 Gb/s and 0.06121 bit/µm, corresponding to approximately 16.33 µm occupied by 1 bit for optical communication wavelength. Coupling a number of different types of cavities, higher Q-factor than that of an individual cavity can be obtained. It is shown that by coupling two cavities, the Q-factor is heightened to be 1.748 × 105 in low translational-symmetry case. We proposed a structure for promising application in optical signal processors and random access memories. Furthermore, we get longer delaying time and high Q-factor, which have important applications in low-threshold lasers, high finesse filters and high-speed switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akahane Y, Asano T, Song B, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961):944–947

    Article  CAS  Google Scholar 

  • Anderson CM, Giapis KP (1997) Symmetry reduction in group 4 mm photonic crystals. Phys Rev B 56(12):7313–7320

    Article  CAS  Google Scholar 

  • Asano T, Song B, Tanaka Y, Noda S (2003) Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic-crystal slab. Appl Phys Lett 83(3):407–409

    Article  CAS  Google Scholar 

  • Asghari M, Krishnamoorthy AV (2011) Silicon photonics: Energy-efficient communication. Nat Photonics 5(5):268–270

    Article  CAS  Google Scholar 

  • Baba T, Matsuzaki T (1996) Fabrication and photoluminescence studies of GaInAsP/InP 2-dimensional photonic crystals. Jpn J Appl Phys 35(2):1348–1352

    Article  CAS  Google Scholar 

  • Bouleghlimat O, Hocini A (2014) Ultrahigh-Q modes in anisotropic 2D photonic crystal. Phys Scr 89(10):105502

    Article  Google Scholar 

  • Bowers JE, Burmeister EF, Blumenthal DJ (2006) Optical buffering and switching for optical packet switching. In: International conference on photonics in switching, pp 1–3

  • Chen Q, Allsopp DWE (2009) Group velocity delay in coupled-cavity waveguides based on ultrahigh-Q cavities with Bragg reflectors. J Opt 11(5):054010

    Google Scholar 

  • Corcoran B, Monat C, Grillet C, Moss DJ, Eggleton BJ, White TP et al (2009) Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photon 3:206. https://doi.org/10.1038/nphoton.2009.28

    Article  CAS  Google Scholar 

  • Danaie M, Geravand A, Mohammadi S (2018) Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines. Photon Nanostruct Fundam Appl 28:61–69. https://doi.org/10.1016/j.photonics.2017.11.009

    Article  Google Scholar 

  • Elshahat S, Abood I, Khan K, Yadav A, Bibbo L, Ouyang Z (2018a) Five-line photonic crystal waveguide for optical buffering and data interconnection of picosecond pulse. J Lightwave Technol, 1–1. https://doi.org/10.1109/JLT.2018.2881121

    Article  CAS  Google Scholar 

  • Elshahat S, Abood I, Khan K, Yadav A, Wang Q, Liu Q et al (2018b) Ultra-wideband slow light transmission with high normalized delay bandwidth product in W3 photonic crystal waveguide. Superlattices Microstruct 121:45–54. https://doi.org/10.1016/j.spmi.2018.07.025

    Article  CAS  Google Scholar 

  • Elshahat S, Khan K, Yadav A, Bibbò L, Ouyang Z (2018c) Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide. Optics Commun 418:73–79. https://doi.org/10.1016/j.optcom.2018.02.063

    Article  CAS  Google Scholar 

  • Feng J, Chen Y, Blair J, Kurt H, Hao R, Citrin DS et al (2009) Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching. J Vacuum Sci Technol B 27(2):568–572

    Article  CAS  Google Scholar 

  • Fussell DP, Dignam MM (2007) Engineering the quality factors of coupled-cavity modes in photonic crystal slabs. Appl Phys Lett 90(18):183121

    Article  Google Scholar 

  • Green WMJ, Rooks MJ, Sekaric L, Vlasov YA (2007) Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt Express 15(25):17106–17113

    Article  Google Scholar 

  • Khurgin JB (2005) Performance of nonlinear photonic crystal devices at high bit rates. Opt Lett 30(6):643–645

    Article  Google Scholar 

  • Krauss TF (2008) Why do we need slow light? Nat Photonics 2:448–449

    Article  CAS  Google Scholar 

  • Li C, Wan Y, Zong W (2017) High sensitivity electro-optic modulation of slow light in ellipse rods PC-CROW. Optics Commun 395:188–194. https://doi.org/10.1016/j.optcom.2016.01.070

    Article  CAS  Google Scholar 

  • Loncar M, Doll T, Vuckovic J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18(10):1402–1411

    Article  CAS  Google Scholar 

  • Long F, Tian H, Ji Y (2010a) A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J Lightwave Technol 28(8):1139–1143

    Article  Google Scholar 

  • Long F, Tian HP, Ji YF (2010b) Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes. Appl Opt 49(25):4808–4813. https://doi.org/10.1364/Ao.49.004808

    Article  CAS  Google Scholar 

  • Monat C, Corcoran B, Pudo D, Ebnali-Heidari M, Grillet C, Pelusi MD et al (2010) Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J Sel Top Quantum Electron 16(1):344–356. https://doi.org/10.1109/Jstqe.2009.2033019

    Article  CAS  Google Scholar 

  • Nguyen HC, Sakai Y, Shinkawa M, Ishikura N, Baba T (2011) 10 Gb/s operation of photonic crystal silicon optical modulators. Opt Express 19(14):13000–13007

    Article  CAS  Google Scholar 

  • Pare C, Belanger PA (2000) Spectral domain analysis of dispersion management without averaging. Opt Lett 25(12):881–883

    Article  CAS  Google Scholar 

  • Povinelli ML, Johnson SG, Joannopoulos JD (2005) Slow-light, band-edge waveguides for tunable time delays. Opt Express 13(18):7145–7159. https://doi.org/10.1364/OPEX.13.007145

    Article  CAS  Google Scholar 

  • Schulz SA, O’Faolain L, Beggs DM, White TP, Melloni A, Krauss TF (2010) Dispersion engineered slow light in photonic crystals: a comparison. J Opt 12(10):104004. https://doi.org/10.1088/2040-8978/12/10/104004

    Article  CAS  Google Scholar 

  • Schulz SA, Upham J, O’Faolain L, Boyd RW (2017) Photonic crystal slow light waveguides in a kagome lattice. Opt Lett 42(16):3243–3246. https://doi.org/10.1364/Ol.42.003243

    Article  CAS  Google Scholar 

  • Shim J, Lee EK, Lee YJ, Nieminen RM (2005) Density-functional calculations of defect formation energies using the supercell method: Brillouin-zone sampling. Phys Rev B 71(24):245204. https://doi.org/10.1103/PhysRevB.71.245204

    Article  CAS  Google Scholar 

  • Tanaka Y, Kawashima H, Ikeda N, Sugimoto Y, Kuwatsuka H, Hasama T et al (2006) Optical bistable operations in AlGaAs-based photonic crystal slab microcavity at telecommunication wavelengths. IEEE Photonics Technol Lett 18(19):1996–1998

    Article  CAS  Google Scholar 

  • Tucker RS (2009) Capabilities and limitations of slow light optical buffers: searching for the killer application. In: Quantum electronics and laser science conference, pp 1–1

  • Tucker RS (2011) Green optical communications—Part II: energy limitations in networks. IEEE J Sel Top Quantum Electron 17(2):261–274

    Article  CAS  Google Scholar 

  • Tucker RS, Ku PC, Chang-Hasnain CJ (2005) Slow-light optical buffers: capabilities and fundamental limitations. J Lightwave Technol 23(12):4046–4066. https://doi.org/10.1109/Jlt.2005.853125

    Article  Google Scholar 

  • Varmazyari V, Habibiyan H, Ghafoorifard H (2013) All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides. Appl Opt 52(26):6497–6505. https://doi.org/10.1364/AO.52.006497

    Article  CAS  Google Scholar 

  • Waks E, Vuckovic J (2005) Coupled mode theory for photonic crystal cavity-waveguide interaction. Opt Express 13(13):5064–5073

    Article  Google Scholar 

  • Wan Y, Jiang L-J, Xu S, Li M-X, Liu M-N, Jiang C-Y et al (2017) Slow light effect with high group index and wideband by saddle-like mode in PC-CROW. Front Phys 13(2):134202. https://doi.org/10.1007/s11467-017-0719-1

    Article  Google Scholar 

  • Yanik MF, Fan S, Soljacic M (2003) High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83(14):2739–2741

    Article  CAS  Google Scholar 

  • Yariv A, Xu Y, Lee RK, Scherer A (1999) Coupled-resonator optical waveguide: a proposal and analysis. Opt Lett 24(11):711–713

    Article  CAS  Google Scholar 

  • Yilmaz D, Yeltik A, Kurt H (2018) Highly controlled Bloch wave propagation in surfaces with broken symmetry. Opt Lett 43(11):2660–2663. https://doi.org/10.1364/OL.43.002660

    Article  CAS  Google Scholar 

  • Zhai Y, Tian H, Ji Y (2011) Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide. J Lightwave Technol 29(20):3083–3090

    Article  Google Scholar 

  • Zhang Z, Qiu M (2004) Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt Express 12(17):3988–3995

    Article  Google Scholar 

  • Zhang Y-n, Zhao Y, Lv R-q (2015) A review for optical sensors based on photonic crystal cavities. Sens Actuators A Phys 233:374–389. https://doi.org/10.1016/j.sna.2015.07.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61275043, 61307048, 60877034, and 61605128, in part by Guangdong Province Natural Science Founds (GDNSF) under Grant 2017A030310455, and in part by the Shenzhen Science Funds (SZSF) under Grants JCYJ20170302151033006 and 20180123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbiao Ouyang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshahat, S., Abood, I., Khan, K. et al. High-capability micro-optical buffer based on coupled hexagonal cavity in photonic crystal waveguide. Appl Nanosci 9, 1963–1970 (2019). https://doi.org/10.1007/s13204-019-00999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00999-2

Keywords

Navigation