Skip to main content
Log in

h-CaS and h-CaSe nanosheets in CaX (X = O, S, Se and Te) series: promising thermoelectric materials under DFT investigation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The present work reports systematic study of a series of calcium chalcogenides CaX (X = O, S, Se and Te) in the architecture of rock-salt and hexagonal monolayer phases. Using first principle investigation within density functional theory (DFT) framework, we have computed the equilibrium structure and phonon dispersion curves for the dynamic stability, which follows the calculation of electronic properties like electronic band structure and projected density of state for the considered chalcogenide series. Furthermore, the thermoelectric properties such as thermal and electrical conductivities, Seebeck coefficient (S) and figure of merit (ZT) of the considered compounds are computed using the semi-classical Boltzmann transport equations (BTE). The present work reports the monolayer calcium chalcogenides as potential candidate for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdus Salam MM (2018) Theoretical study of CaO, CaS and CaSe via first-principles calculations. Results Phys 10:934–945

    Article  Google Scholar 

  • Ahmad S, Mukherjee S (2014) A comparative study of electronic properties of bulk MoS2 and its monolayer using DFT technique: application of mechanical strain on MoS2 monolayer. Graphene 03:52

    Article  Google Scholar 

  • Asano S, Yamashita N, Nakao Y (1978) Luminescence of the Pb2+—ion dimer center in CaS and CaSe phosphors. Phys Status Solidi B 89:663–673

    Article  CAS  Google Scholar 

  • Charifi Z, Baaziz H, Hassan FEH, Bouarissa N (2005) High pressure study of structural and electronic properties of calcium chalcogenides. J Phys Condens Matter 17:4083–4092

    Article  CAS  Google Scholar 

  • Chen G, Dresselhaus MS, Dresselhaus G, Fleurial J-P, Caillat T (2003) Recent developments in thermoelectric materials. Int Mater Rev 48:45–66

    Article  CAS  Google Scholar 

  • Debnath B, Sarkar U, Debbarma M, Bhattacharjee R, Chattopadhyaya S (2018) Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom (s) in rock-salt phase—a first principle based theoretical initiative. J Solid State Chem 258:358–375

    Article  CAS  Google Scholar 

  • Ekbundit S, Chizmeshya A, LaViolette R, Wolf GH (1996) Theoretical and experimental investigation of the equations of state and phase stabilities of MgS and CaS. J Phys Condens Matter 8:8251

    Article  CAS  Google Scholar 

  • Gandi AN, Schwingenschlögl U (2016) Thermal conductivity of bulk and monolayer MoS2. EPL Europhys Lett 113:36002

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 11–19

    Chapter  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Haase MA, Qiu J, DePuydt JM, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59:1272–1274

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  • Karki BB, Crain J (1998) Structure and elasticity of CaO at high pressure. J Geophys Res Solid Earth 103:12405–12411

    Article  CAS  Google Scholar 

  • Khachai H, Khenata R, Haddou A, Bouhemadou A, Boukortt A, Soudini B, Boukabrine F, Abid H (2009) First-principles study of structural, electronic and elastic properties under pressure of calcium chalcogenides. Phys Proc 2:921–925

    Article  CAS  Google Scholar 

  • Khenata R, Sahnoun M, Baltache H, Rérat M, Rached D, Driz M, Bouhafs B (2006) Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: an ab initio study. Phys B Condens Matter 371:12–19

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  • Kokalj A (1999) XCrySDen—a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17:176–179

    Article  CAS  Google Scholar 

  • Kumar V, Roy DR (2018) Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J Mater Sci 53:8302–8313

    Article  CAS  Google Scholar 

  • Kumar S, Schwingenschlogl U (2015) Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem Mater 27:1278–1284

    Article  CAS  Google Scholar 

  • Luo H, Greene RG, Ghandehari K, Li T, Ruoff AL (1994) Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys Rev B 50:16232–16237

    Article  CAS  Google Scholar 

  • Madsen GK, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    Article  CAS  Google Scholar 

  • Mammone JF, Mao HK, Bell PM (1981) Equations of state of CaO under static pressure conditions. Geophys Res Lett 8:140–142

    Article  Google Scholar 

  • Pandey R, Sivaraman S (1991) Spectroscopic properties of defects in alkaline-earth sulfides. J Phys Chem Solids 52:211–225

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  • Philipsen PHT, Baerends EJ (1996) Cohesive energy of 3D transition metals: density functional theory atomic and bulk calculations. Phys Rev B 54:5326

    Article  CAS  Google Scholar 

  • Popescu M (2006) Chalcogenides—past, present, future. J Non-Cryst Solids 352:887–891

    Article  CAS  Google Scholar 

  • Poudeu PF, D’Angelo J, Downey AD, Short JL, Hogan TP, Kanatzidis MG (2006) High thermoelectric figure of merit and nanostructuring in bulk p-type Na1–xPbmSbyTem+2. Angew Chem Int Ed 45:3835–3839

    Article  CAS  Google Scholar 

  • Rodríguez-Hernández P, Radescu S, Muñoz A (2002) Relative stability of calcium chalcogenides from ab initio theory. High Press Res 22:459–463

    Article  Google Scholar 

  • SArya B, Aynyas M, Sanyal SP (2008) High pressure study of structural and elastic properties of barium chalcogenides. Appl Phys 46:5

    Google Scholar 

  • Shah EV, Roy DR (2018) Density functional investigation on hexagonal nanosheets and bulk thallium nitrides for possible thermoelectric applications. Appl Nanosci 9:33–42

    Article  Google Scholar 

  • Shayeganfar F, Vasu KS, Nair RR, Peeters FM, Neek-Amal M (2017) Monolayer alkali and transition-metal monoxides: MgO, CaO, MnO, and NiO. Phys Rev B 95:144109

    Article  Google Scholar 

  • Smet PF, Moreels I, Hens Z, Poelman D (2010) Luminescence in sulfides: a rich history and a bright future. Materials 3:2834–2883

    Article  CAS  Google Scholar 

  • Stepanyuk VS, Szász A, Farberovich OV, Grigorenko AA, Kozlov AV, Mikhailin VV (1989) An electronic band structure calculation and the optical properties of alkaline-earth sulphides. Phys Status Solidi B 155:215–220

    Article  CAS  Google Scholar 

  • Tyagi K, Gahtori B, Bathula S, Srivastava AK, Shukla AK, Auluck S, Dhar A (2014) Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. J Mater Chem A 2:15829–15835

    Article  CAS  Google Scholar 

  • Wang C, Guo J, Dong L, Aiyiti A, Xu X, Li B (2016) Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci Rep 6:25334

    Article  CAS  Google Scholar 

  • Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51:459

    Article  CAS  Google Scholar 

  • Zheng H, Li X-B, Chen N-K, Xie S-Y, Tian WQ, Chen Y, Xia H, Zhang SB, Sun H-B (2015) Monolayer II-VI semiconductors: A first-principles prediction. Phys Rev B 92:115307

    Article  Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant no. EMR/2016/005830). KR is thankful to the SVNIT, Surat for his institute research fellowship (FIR-D17PH002). DRR and KR are also thankful for the High-Performance Computing facility at CDAC, Pune and IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debesh R. Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, K., Roy, D.R. h-CaS and h-CaSe nanosheets in CaX (X = O, S, Se and Te) series: promising thermoelectric materials under DFT investigation. Appl Nanosci 9, 1845–1856 (2019). https://doi.org/10.1007/s13204-019-00997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00997-4

Keywords

Navigation