Skip to main content
Log in

Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene–carbon nanotube hybrid fillers

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A novel poly(m-phenyleneisophthalamide) (PMIA) dielectric nanocomposite was successfully fabricated with functionally reduced graphene oxide (frGO) and multi-walled carbon nanotubes (MWCNTs) hybrid fillers. Due to effective functionalization of reduced graphene oxide as well as π–π interaction between frGO and MWCNTs, FGC (FGC) hybrid fillers were well-distributed in PMIA matrix. The relevant properties of FGC/PMIA dielectric nanocomposite were researched, and results demonstrated that the dielectric constant of PMIA nanocomposite with 3 wt% FGC hybrid fillers was increased to 12.8 (increased by 290%). Due to the existence of FGC fillers, the THeat-resistance index of FGC/PMIA nanocomposites displayed an obvious increment. In addition, the “bridge effect” of MWCNTs on improving thermal conductivity of FGC/PMIA dielectric nanocomposite was also significant. For PMIA nanocomposite with 3 wt% FGC hybrid fillers, the thermal conductivity was remarkably increased to 7.38 W/m·K of in-plane direction and 0.81 W/m·K of through-plane direction. Consequently, these results reveal a new approach for preparing FGC/PMIA dielectric nanocomposite with high operating temperature and outstanding thermal conductivity, which can meet the urgent demand for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akhtar MW, Lee YS, Yoo DJ, Kim JS (2017) Alumina–graphene hybrid filled epoxy composite: quantitative validation and enhanced thermal conductivity. Compos B Eng 131:184–195

    CAS  Google Scholar 

  • Azizi A, Gadinski MR, Li Q et al (2017) High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv Mater 29:1701864

    Google Scholar 

  • Bhowmik K, Pramanik S, Medda SK, De G (2012) Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass. J Mater Chem A 22:24690–24697

    CAS  Google Scholar 

  • Chen W, Weng W (2016) Ultrafine lauric–myristic acid eutectic/poly(meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning. Appl Energy 173:168–176

    CAS  Google Scholar 

  • Chen L, Hu Z, Xie X, Liu Z (2006) Properties and structures of terephthalyl chloride (TPC) modified meta-aramid copolymers. J Macromol Sci A 43:1741–1748

    CAS  Google Scholar 

  • Chen H, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    CAS  Google Scholar 

  • Chong CT, Tan WH, Lee SL et al (2017) Morphology and growth of carbon nanotubes catalytically synthesized by premixed hydrocarbon-rich flames. Mater Chem Phys 197:246–255

    CAS  Google Scholar 

  • Choudhary S, Mungse HP, Khatri OP (2012) Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J Mater Chem 22:21032–21039

    CAS  Google Scholar 

  • Deng N, Wang Y, Yan J et al (2017) A F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide separator for high-performance lithium-sulfur batteries. J Power Sources 362:243–249

    CAS  Google Scholar 

  • Du W, Zhang Z, Su H, Lin H, Li Z (2018) Urethane-functionalized graphene oxide for improving compatibility and thermal conductivity of waterborne polyurethane composites. Ind Eng Chem Res 57:7146–7155

    CAS  Google Scholar 

  • Feng Y, Li X, Zhao X et al (2018) Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “Branch-Like” flame-retardant functionalized graphene. ACS Appl Mater Inter 10:21628–21641

    CAS  Google Scholar 

  • Ganiu B, Olowojoba S, Kopsidas S, Eslava et al (2017) A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. J Mater Sci 52:7323–7344

    Google Scholar 

  • Gao W, Guo J, Xiong J, Smith T, Andrew Sun L (2018) Improving thermal, electrical and mechanical properties of fluoroelastomer/amino-functionalized multi-walled carbon nanotube composites by constructing dual crosslinking networks. Compos Sci Technol 162:49–57

    CAS  Google Scholar 

  • Gu J, Dong W, Tang Y et al (2017) Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J Mater Chem C 5:6929–6936

    CAS  Google Scholar 

  • Guo L, Zhang Z, Kang R et al (2018) Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO. RSC Adv 8:12337–12343

    CAS  Google Scholar 

  • Han K, Li Q, Chanthad C et al (2015) A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv Funct Mater 25:3505–3513

    CAS  Google Scholar 

  • Hsiao M-C, Chen-Chi M, Ma J-C, Chiang et al (2013a) Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale 5:5863–5871

    CAS  Google Scholar 

  • Hsiao MC, Ma CCM, Chiang JC et al (2013b) Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale 5:5863–5871

    CAS  Google Scholar 

  • Hua D, Japip S, Wang KY, Chung T (2018) Green design of poly(m-phenylene isophthalamide) (PMIA) based thin-film composite membranes for organic solvent nanofiltration (OSN) and concentrating lecithin in hexane. ACS Sustain Chem Eng 6:10696–10705

    CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    CAS  Google Scholar 

  • Kim SY, Noh YJ, Yu J (2015) Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Compos Part A Appl S 69:219–225

    CAS  Google Scholar 

  • Kumar B, Kim SW (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342–355

    CAS  Google Scholar 

  • Lehman JH, Terrones M, Mansfield E, Hurst KE. Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602

    CAS  Google Scholar 

  • Li Q, Han K, Gadinski MR, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26:6244–6249

    CAS  Google Scholar 

  • Li W, Shang T, Yang W et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8:13037–13050

    CAS  Google Scholar 

  • Liu C, Yan H, Chen Z, Yuan L, Lv Q (2015) Effect of surface-functionalized reduced graphene oxide on mechanical and tribological properties of bismaleimide composites. RSC Adv 5:46632–46639

    CAS  Google Scholar 

  • Ma J, Liu J, Zhu W, Qin W (2018) Solubility study on the surfactants functionalized reduced graphene oxide. Colloid Surface A 538:79–85

    CAS  Google Scholar 

  • Molberg M, Crespy D, Rupper P et al (2010) High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater 20:3280–3291

    CAS  Google Scholar 

  • Mural PKS, Pawar SP, Jayanthi S et al (2015) Engineering nanostructures by decorating magnetic nanoparticles onto Graphene Oxide Sheets to shield electromagnetic radiations. ACS Appl Mater Interfaces 7:16266–16278

    CAS  Google Scholar 

  • Oh H, Kim K, Ryu S, Kim J (2019) Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants. Compos Part A Appl S 116:206–215

    CAS  Google Scholar 

  • Pan Z, Yao L, Zhai J, Shen B, Wang H (2017) Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos Sci Technol 147:30–38

    CAS  Google Scholar 

  • Paniagua SA, Kim Y, Henry K et al (2014) Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 6:3477–3482

    CAS  Google Scholar 

  • Peng X, Xu W, Chen L et al (2016) Development of high dielectric polyimides containing bipyridine units for polymer film capacitor. React Funct Polym 106:93–98

    CAS  Google Scholar 

  • Qiu H, Han X, Qiu F, Wang J (2016) Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors. Appl Surf Sci 376:261–268

    CAS  Google Scholar 

  • Romano MS, Li N, Antiohos D et al (2013) Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications. Adv Mater 25:6602–6606

    CAS  Google Scholar 

  • Sa K, Mahakul PC, Nanda KK, Mahanandia P (2018) Effect of ionic liquid functionalized carbon nanotubes on mechanical, thermal and electrical properties of carbon nanotubes-reduced graphene oxide/PMMA nanocomposites. Chem Phys Lett 706:76–81

    CAS  Google Scholar 

  • Savchak M, Borodinov N, Burtovyy R et al (2018) Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl Mater Interfaces 10:3975–3985

    CAS  Google Scholar 

  • Venkat N, Dang TD, Bai Z et al (2010) High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mat Sci Eng B Adv 168:16–21

    CAS  Google Scholar 

  • Wang Y, Shi ZX, Yin J (2011) Kevlar oligomer functionalized graphene for polymer composites. Polymer 52:3661–3670

    CAS  Google Scholar 

  • Wang X, Si Y, Wang X et al (2013) Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers. Nanoscale 5:886–889

    CAS  Google Scholar 

  • Wang G, Huang X, Jiang P (2015) Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl Mater Interfaces 7:18017–18027

    CAS  Google Scholar 

  • Wang B, Zhang Z, Chang K et al (2018a) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617

    CAS  Google Scholar 

  • Wang T, He X, Li Y, Li J (2018b) Novel poly(piperazine-amide)(PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions. Chem Eng J 351:1013–1026

    CAS  Google Scholar 

  • Wu K, Lei C, Yang W et al (2016) Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss. Compos Sci Technol 134:191–200

    CAS  Google Scholar 

  • Wu Y, Ye K, Liu Z et al (2018) Effective thermal transport highway construction within dielectric polymer composites via a vacuum-assisted infiltration method. J Mater Chem C 6(24):6494–6501

    CAS  Google Scholar 

  • Xu LQ, Yang WJ, Neoh KG et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43:8336–8339

    CAS  Google Scholar 

  • Xu X, Chen J, Zhou J, Li B (2018) Thermal Conductivity of polymers and their nanocomposites. Adv Mater 30:1705544

    Google Scholar 

  • Yang K, Huang X, He J, Jiang P (2015) Strawberry-like core-shell Ag@ polydopamine@ BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv Mater Interfaces 2:1500361

    Google Scholar 

  • Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tool Manuf 51:18–24

    CAS  Google Scholar 

  • Zhang C, Huang S, Tjiu WW, Fan W, Liu T (2012a) Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J Mater Chem 22:2427–2434

    CAS  Google Scholar 

  • Zhang Z, Song Y, Huo F, Guo D (2012b) Nanoscale material removal mechanism of soft-brittle HgCdTe single crystals under nanogrinding by ultrafine diamond grits. Tribol Lett 46:95–100

    Google Scholar 

  • Zhang Z, Song Y, Xu C, Gu D (2012c) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67:197–200

    CAS  Google Scholar 

  • Zhang Z, Zhang X, Xu C, Guo D (2013a) Characterization of nanoscale chips and a novel model for face nanogrinding on soft-brittle HgCdTe films. Tribol Lett 49:203–215

    CAS  Google Scholar 

  • Zhang ZY, Huo YX, Guo DM (2013b) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    CAS  Google Scholar 

  • Zhang Z, Guo D, Wang B, Kang R, Zhang B (2015a) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395

    CAS  Google Scholar 

  • Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015b) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64:349–352

    Google Scholar 

  • Zhang H, Zhang Y, Xu T et al (2016) Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sources 329:8–16

    CAS  Google Scholar 

  • Zhang Z, Cui J, Wang B et al (2017a) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    CAS  Google Scholar 

  • Zhang Z, Du Y, Wang B et al (2017b) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65:132

    Google Scholar 

  • Zhang Z, Huang S, Wang S et al (2017c) A novel approach of high-performance grinding using developed diamond wheels. Int J Adv Manuf Technol 91:3315–3326

    Google Scholar 

  • Zhang Y, Zhang T, Liu L et al (2018) Sandwich-structured PVDF-based composite incorporated with hybrid Fe3O4@BN nanosheets for excellent dielectric properties and energy storage performance. J Phys Chem C 122:1500–1512

    CAS  Google Scholar 

  • Zhao Y, Perrier S (2007) Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules 40:9116–9124

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Shanghai (Grant no. 17ZR1401100), and National Natural Science Foundation of China (Grant no. 51473031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuming Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, G., Wang, Y., Yu, J. et al. Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene–carbon nanotube hybrid fillers. Appl Nanosci 9, 1743–1757 (2019). https://doi.org/10.1007/s13204-019-00955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00955-0

Keywords

Navigation