Skip to main content
Log in

Dopa-based facile procedure to synthesize AgNP/cellulose nanofiber composite for antibacterial applications

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Herein we present our research on synthesis of silver nanoparticles (AgNPs) on cellulose nanofibers (CN) by a facile procedure using dopamine hydrochloride (Dopa), as reducing agent. The CN were produced by deacetylation of electrospun cellulose acetate (CA) nanofibers. The CN were then treated with 2 mg/mL of Dopa in 1 M Tris HCl buffer (pH 8.5) followed by soaking in 150 mM AgNO3 solution for generation of AgNPs. The samples were characterized with SEM, XRD, FESEM, EDX, XPS, TEM, FTIR analysis and antibacterial assays. Synthesis of AgNPs was confirmed by XRD, XPS and TEM analysis. The TEM images demonstrated CNAgNP samples well decorated with AgNPs. Sizes of the spherical AgNPs, calculated by Debye–Scherrer method, were 20 nm. Antibacterial test results confirmed excellent bacterial growth inhibition properties of CNAgNP on agar plates and in liquid medium against E. coli and S. aureus strains. The relative cell viability (CFU/mL) test results demonstrated excellent bactericidal potential of the CNAgNP samples against the tested strains. The CNAgNP prepared by an environmentally benign process would thus be a promising nano-biocomposite for antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178

    CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188

    CAS  Google Scholar 

  • Augustine R, Kalarikkal N, Thomas S (2016) Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl Nanosci 6(3):337–344

    CAS  Google Scholar 

  • Chang X, Yang J, Han D, Zhang B, Xiang X, He J (2018) Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts. Catalysts 8(4):147

    Google Scholar 

  • Chen C, Mo M, Chen W, Pan M, Xu Z, Wang H (2018) Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments. Compos Sci Technol 156:103–108

    CAS  Google Scholar 

  • Deng F, Guan Y, Shi Z, Wang F, Che X, Liu Y (2017) The effect of dopamine modified titanium dioxide nanoparticles on the performance of poly (vinyl alcohol)/titanium dioxide composites. Compos Sci Technol 150:120–127

    CAS  Google Scholar 

  • Fu J, Li D, Li G, Huang F, Wei Q (2015) Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. J Electroanal Chem 738:92–99

    CAS  Google Scholar 

  • Fu H, Wang Y, Li X, Chen W (2016) Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos Sci Technol 126:86–93

    CAS  Google Scholar 

  • Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24(8):3179–3190

    CAS  Google Scholar 

  • Gopiraman M, Jatoi AW, Hiromichi S, Yamaguchi K, Jeon H-Y, Chung I-M (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym 149:51–59

    CAS  Google Scholar 

  • Gurunathan S, Han JW, Park JH, Kim E, Choi Y-J, Kwon D-N (2015) Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257

    CAS  Google Scholar 

  • Hao M, Tang M, Wang W, Tian M, Zhang L, Lu Y (2016) Silver-nanoparticle-decorated multiwalled carbon nanotubes prepared by poly (dopamine) functionalization and ultraviolet irradiation. Compos Part B Eng 95:395–403

    CAS  Google Scholar 

  • Hu S, Hsieh Y-L (2015) Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr Polym 131:134–141

    CAS  Google Scholar 

  • Huang J-F, Shi Q-S, Feng J, Chen M-J, Li W-R, Li L-Q (2017) Facile pyrolysis preparation of rosin-derived biochar for supporting silver nanoparticles with antibacterial activity. Compos Sci Technol 145:89–95

    CAS  Google Scholar 

  • Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H (2015) Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym 117:813–817

    CAS  Google Scholar 

  • Jang KH, Kang YO, Lee TS, Park WH (2014) Photocatalytic activities of cellulose-based nanofibers with different silver phases: silver ions and nanoparticles. Carbohydr Polym 102:956–961

    CAS  Google Scholar 

  • Jatoi AW, Khatri Z, Ahmed F, Memon MH (2015) Effect of silicone nano, nano/micro and nano/macro-emulsion softeners on color yield and physical characteristics of dyed cotton fabric. J Surfactants Deterg 18(2):205–211

    CAS  Google Scholar 

  • Jatoi AW, Khatri Z, Ahmed F (2016) Influence of amino-functional macro and micro silicone softeners on the properties of cotton fabric. Mehran Univ Res J Eng Technol 34(1):70–74

    Google Scholar 

  • Jatoi AW, Ahmed F, Khatri M, Tanwari A, Khatri Z, Lee H (2017) Ultrasonic-assisted dyeing of nylon-6 nanofibers. Ultrason Sonochem 39:34–38

    CAS  Google Scholar 

  • Jatoi AW, Kim IS, Ni Q-Q (2018a) Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr Polym 207:640–649

    Google Scholar 

  • Jatoi AW, Kim IS, Ni Q-Q (2018b) Ultrasonic energy-assisted coloration of polyurethane nanofibers. Appl Nanosci 8(6):1505–1514

    CAS  Google Scholar 

  • Jatoi AW, Jo YK, Lee H, Oh SG, Hwang DS, Khatri Z (2018c) Antibacterial efficacy of poly (vinyl alcohol) composite nanofibers embedded with silver-anchored silica nanoparticles. J Biomed Mater Res Part B Appl Biomater 106(3):1121–1128

    CAS  Google Scholar 

  • Jeon EK, Seo E, Lee E, Lee W, Um M-K, Kim B-S (2013) Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem Commun 49(33):3392–3394

    CAS  Google Scholar 

  • Kassaee M, Mohammadkhani M, Akhavan A, Mohammadi R (2011) In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct Chem 22(1):11–15

    CAS  Google Scholar 

  • Ke M, Wahab JA, Hyunsik B, Song K-H, Lee JS, Gopiraman M (2016) Allantoin-loaded porous silica nanoparticles/polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Adv 6(6):4593–4600

    CAS  Google Scholar 

  • Kim JH, Lee H, Jatoi AW, Im SS, Lee JS, Kim I-S (2016) Juniperus chinensis extracts loaded PVA nanofiber: enhanced antibacterial activity. Mater Lett 181:367–370

    CAS  Google Scholar 

  • Kim S, Yoo HY, Huang J, Lee Y, Park S, Park Y (2017) Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater. ACS Nano 11(7):6764–6772

    CAS  Google Scholar 

  • Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056

    CAS  Google Scholar 

  • Lee K, Prajatelistia E, Hwang DS, Lee H (2015) Role of dopamine chemistry in the formation of mechanically strong mandibles of grasshoppers. Chem Mater 27(19):6478–6481

    CAS  Google Scholar 

  • Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275

    CAS  Google Scholar 

  • Liebscher Jr, Mrówczyński R, Scheidt HA, Filip C, Hădade ND, Turcu R (2013) Structure of polydopamine: a never-ending story? Langmuir 29(33):10539–10548

    CAS  Google Scholar 

  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    CAS  Google Scholar 

  • Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z (2015) Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Adv 5(18):13470–13477

    CAS  Google Scholar 

  • Ma Y, Niu H, Cai Y (2011a) Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem Commun 47(47):12643–12645

    CAS  Google Scholar 

  • Ma Y, Niu H, Zhang X, Cai Y (2011b) One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk. Analyst 136(20):4192–4196

    CAS  Google Scholar 

  • Mahapatra A, Garg N, Nayak B, Mishra B, Hota G (2012) Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application. J Appl Polym Sci 124(2):1178–1185

    CAS  Google Scholar 

  • Mkhalid I (2018) Photocatalytic activity of Bi2S3 enlargement by decoration of silver for visible light thiophene degradation. Appl Nanosci 8(7):1855–1864

    CAS  Google Scholar 

  • Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98(1):290–294

    CAS  Google Scholar 

  • Rathod VT, Kumar JS, Jain A (2017) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7(8):519–548

    CAS  Google Scholar 

  • Ryu S-Y, Chung JW, Kwak S-Y (2015) Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO2 nanoparticles. Compos Sci Technol 117:9–17

    CAS  Google Scholar 

  • Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30):9798–9808

    CAS  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B 108:80–84

    CAS  Google Scholar 

  • Shi H, Liu H, Luan S, Shi D, Yan S, Liu C (2016) Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components. Compos Sci Technol 127:28–35

    CAS  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434

    CAS  Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee C-K (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20(33):6948–6955

    CAS  Google Scholar 

  • Sureshkumar M, Siswanto DY, Chen YC, Lee CK, Wang MJ (2013) Antibacterial and biocompatible surfaces based on dopamine autooxidized silver nanoparticles. J Polym Sci Part B: Polym Phys 51(4):303–310

    CAS  Google Scholar 

  • Teo W-E, Ramakrishna S (2009) Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol 69(11–12):1804–1817

    CAS  Google Scholar 

  • Wahab JA, Xu G, Lee H, Nam PD, Wei K, Kim SH (2016) Fabrication of silk fibroin/eggshell nanofiber membranes for facemasks. Fibers Polym 17(11):1776–1781

    CAS  Google Scholar 

  • Wahab JA, Lee H, Wei K, Nagaishi T, Khatri Z, Behera BK (2017) Post-electrospinning thermal treatments on poly (4-methyl-1-pentene) nanofiber membranes for improved mechanical properties. Polym Bull 74(12):5221–5230

    Google Scholar 

  • Wahab JA, Kumar P, Kim IS, Ni QQ (2018) Sonication induced effective approach for coloration of compact polyacrylonitrile (PAN) nanofibers. Ultrason Sonochem 51:399–405

    Google Scholar 

  • Wang G, Huang X, Jiang P (2017) Mussel-inspired fluoro-polydopamine functionalization of titanium dioxide nanowires for polymer nanocomposites with significantly enhanced energy storage capability. Sci Rep 7:43071

    CAS  Google Scholar 

  • Yahyaei B, Manafi S, Fahimi B, Arabzadeh S, Pourali P (2018) Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds. Appl Nanosci: 1–10

  • Yang B, Lim C, Hwang DS, Cha HJ (2016) Switch of surface adhesion to cohesion by Dopa-Fe3+ complexation, in response to microenvironment at the mussel plaque/substrate interface. Chem Mater 28(21):7982–7989

    CAS  Google Scholar 

  • Yoo HY, Iordachescu M, Huang J, Hennebert E, Kim S, Rho S (2016) Sugary interfaces mitigate contact damage where stiff meets soft. Nat Commun 7:11923

    CAS  Google Scholar 

  • Zhang F-J, Chen M-L, Oh W-C (2011) Photoelectrocatalytic properties and bactericidal activities of silver-treated carbon nanotube/titania composites. Compos Sci Technol 71(5):658–665

    CAS  Google Scholar 

  • Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22–29

    CAS  Google Scholar 

  • Zienkiewicz-Strzałka M, Deryło-Marczewska A, Kozakevych R (2018) Silica nanocomposites based on silver nanoparticles-functionalization and pH effect. Appl Nanosci 8(7):1649–1668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ick Soo Kim or Qing-Qing Ni.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, A.W., Ogasawara, H., Kim, I.S. et al. Dopa-based facile procedure to synthesize AgNP/cellulose nanofiber composite for antibacterial applications. Appl Nanosci 9, 1661–1670 (2019). https://doi.org/10.1007/s13204-019-00952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00952-3

Keywords

Navigation