Advertisement

Applied Nanoscience

, Volume 8, Issue 8, pp 2071–2075 | Cite as

Structure changes of aligned carbon nanotubes in thermoplastics below percolation revealed by impedance spectroscopy

  • Muchao Qu
  • Maik-Ivo Terasa
  • Rainer Adelung
  • Dirk W. SchubertEmail author
Original Article
  • 61 Downloads

Abstract

In this study, poly(methyl methacrylate) (PMMA)/carbon nanotube (CNT) composite has been prepared using a melt-mixing procedure and an anisotropic filament has been extruded using a capillary rheometer. The electrical properties have been investigated using fast-Fourier transform impedance spectroscopy (FFT-IS), which allows to develop an equivalent circuit. The proposed electrical circuit contains two resistors and two capacitors, which mirrors the structure change of the CNTs in the composites. Some results are counter-intuitive but are explained by a novel microscopic model.

Keywords

Melt spinning Aligned CNTs Below percolation Impedance spectroscopy 

Notes

References

  1. Clayton LM, Sikder AK, Kumar A, Cinke M, Meyyappan M, Gerasimov TG, Harmon JP (2005) Transparent poly (methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Func Mater 15(1):101–106CrossRefGoogle Scholar
  2. Dai J, Wang J, Mu X, Chen X (2011) Realign carbon nanotubes in PMMA nano-fibers by improved electrospinning equipment. J Reinf Plast Compos 30(14):1179–1184CrossRefGoogle Scholar
  3. Djemana M, Hrairi M (2017) Impedance based detection of delamination in composite structures. IOP Conf Ser Mater Sci Eng 184(1):012058.  https://doi.org/10.1088/1757-899X/184/1/012058 CrossRefGoogle Scholar
  4. Feng X, Shi Y, Jin S (2015) Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance. Appl Surf Sci 353:788–792CrossRefGoogle Scholar
  5. Glass RC, Taylor SR, Cahen GL, Stoner GE (1987) Electrochemical impedance spectroscopy as a method to nondestructively monitor simulated in-service damage in a carbon fiber reinforced plastic. J Nondestr Eval 6(4):181–188CrossRefGoogle Scholar
  6. Grammatikos SA, Ball RJ, Evernden M, Jones RG (2018) Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during service. Compos Part A Appl Sci Manuf 105:108–117CrossRefGoogle Scholar
  7. Hammer P, Dos Santos FC, Cerrutti BM, Pulcinelli SH, Santilli CV (2013) Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance. Prog Org Coat 76(4):601–608CrossRefGoogle Scholar
  8. Hayashida K, Matsuoka Y (2015) Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance. Carbon 85:363–371CrossRefGoogle Scholar
  9. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400CrossRefGoogle Scholar
  10. Lahelin M, Annala M, Nykänen A, Ruokolainen J, Seppälä J (2011) In situ polymerized nanocomposites: polystyrene/CNT and poly (methyl methacrylate)/CNT composites. Compos Sci Technol 71(6):900–907CrossRefGoogle Scholar
  11. Li J, Zhang N, He Z, Sun K, Wu Z (2016) Preparation and characterization of one-dimensional nano-structured composite cathodes for solid oxide fuel cells. J Alloy Compd 663:664–671CrossRefGoogle Scholar
  12. Liu J, Rasheed A, Minus ML, Kumar S (2009) Processing and properties of carbon nanotube/poly (methyl methacrylate) composite films. J Appl Polym Sci 112(1):142–156CrossRefGoogle Scholar
  13. Molla-Abbasi P, Ghaffarian SR, Danesh E (2011) Porous carbon nanotube/PMMA conductive composites as a sensitive layer in vapor sensors. Smart Mater Struct 20(10):105012CrossRefGoogle Scholar
  14. Park J, Lee S, Lee JW (2015) Effect of manufacturing condition in PC/PMMA/CNT nanocomposites extrusion on the electrical, morphological, and mechanical properties. Korea-Aust Rheol J 27(1):55–62CrossRefGoogle Scholar
  15. Philip B, Abraham JK, Chandrasekhar A, Varadan VK (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935CrossRefGoogle Scholar
  16. Qu M, Schubert DW (2016) Conductivity of melt spun PMMA composites with aligned carbon fibers. Compos Sci Technol 136:111–118CrossRefGoogle Scholar
  17. Qu M, Nilsson F, Qin Y, Yang G, Pan Y, Liu X, Schubert DW (2017) Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos Sci Technol 150:24–31CrossRefGoogle Scholar
  18. Qu M, Nilsson F, Schubert DW (2018) Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Carbon (submitted)Google Scholar
  19. Steinhauser D, Möwes M, Klüppel M (2016) Carbon black networking in elastomers monitored by simultaneous rheological and dielectric investigations. J Phys Condens Matter 28(49):495103CrossRefGoogle Scholar
  20. Stübler N, Fritzsche J, Klüppel M (2011) Mechanical and electrical analysis of carbon black networking in elastomers under strain. Polym Eng Sci 51(6):1206–1217CrossRefGoogle Scholar
  21. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly (methyl methacrylate) composites. Macromolecules 37(26):9899–9902CrossRefGoogle Scholar
  22. Weng B, Xu F, Salinas A, Lozano K (2014) Mass production of carbon nanotube reinforced poly (methyl methacrylate) nonwoven nanofiber mats. Carbon 75:217–226CrossRefGoogle Scholar
  23. Yao X, Wu H, Wang J, Qu S, Chen G (2007) Carbon nanotube/poly (methyl methacrylate)(CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chem A Eur J 13(3):846–853CrossRefGoogle Scholar
  24. Zeng C, Hossieny N, Zhang C, Wang B (2010) Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer 51(3):655–664CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer MaterialsFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Institute for Material ScienceKiel UniversityKielGermany
  3. 3.Bavarian Polymer Institute (BPI)Key Lab ‘Advanced Fiber Technologies’FürthGermany

Personalised recommendations