Applied Nanoscience

, Volume 8, Issue 5, pp 949–953 | Cite as

Formation of the InAs-, InSb-, GaAs-, and GaSb-polished surface

  • Iryna LevchenkoEmail author
  • Vasyl Tomashyk
  • Iryna Stratiychuk
  • Galyna Malanych
  • Andrii Korchovyi
  • Serhii Kryvyi
  • Oleksandr Kolomys
Original Article


The features of the InAs, InSb, GaAs, and GaSb ultra-smooth surface have been investigated using chemical–mechanical polishing with the (NH4)2Cr2O7–HBr–CH2(OH)CH2(OH)-etching solutions. The etching rate of the semiconductors has been measured as a function of the solution saturation by organic solvent (ethylene glycol). It was found that mechanical effect significantly increases the etching rate from 1.5 to 57 µm/min, and the increase of the organic solvent concentration promotes the decrease of the damaged layer-removing rate. According to AFM, RS, HRXRD results, the treatment with the (NH4)2Cr2O7–HBr–ethylene glycol solutions produces the clean surface of the nanosize level (Ra < 0.5 nm).


Semiconductor Chemical–mechanical polishing Ultra-smooth surface 



  1. Bassignana IC et al (1997) Setting limits on the accuracy of X-ray determination of Al concentration in AlGaAs/GaAs epitaxial layers. J Cryst Growth 172:25–36CrossRefGoogle Scholar
  2. Carles R et al (1984) Raman studies of non-stoichiometric amorphous GaSb films. Philos Mag B 49(1):63–71CrossRefGoogle Scholar
  3. Eminov SO (2011) Wet chemical etching of the In and (111) Sb planes of InSb substrates. Inorgan Mater 47(4):394–398CrossRefGoogle Scholar
  4. Hartnagel H et al (1973) A contribution to etch polishing of GaAs. J Mater Sci 8(7):1061–1063CrossRefGoogle Scholar
  5. Levchenko IV et al (2017) Features of the chemical polishing of InAs, GaAs, InSb and GaSb crystals in the (NH4)2Cr2O7–HBr–CH2(OH)CH2(OH) solutions [in Russian]. Voprosy khimii i khim tekhnologii 2(111):29–35Google Scholar
  6. Lin Z-C et al (2012) A study of material removal amount of sapphire wafer in application of chemical mechanical polishing with different polishing pads. J Mech Sci Technol 26(8):2353–2364CrossRefGoogle Scholar
  7. Marinescu ID et al (2006) Handbook of lapping and polishing. Taylor & Francis Group, LLC CRC PressGoogle Scholar
  8. Martinez R et al (2013) Towards the production of very low defect GaSb and InSb substrates: bulk crystal growth, defect analysis and scaling challenges. In: Proceedings of SPIE 8631: 86311N-1—86311N-8Google Scholar
  9. Matovu JB et al (2013) Fundamental investigation of chemical mechanical polishing of GaAs in silica dispersions: material removal and arsenic trihydride formation pathways. ECS J Solid State Sci Technol. 2(11):P432–P439CrossRefGoogle Scholar
  10. Meng Q et al (2017) Operation limitation of CMP in back-thinning process of InSb IRFPAs. Opt Quant Electron 49(211):1–11Google Scholar
  11. Papis E et al (2001) Chemical processing of GaSb related to surface preparation and patterning. In: Proceedings of SPIE, vol 4413, pp 82–88Google Scholar
  12. Pashchenko HA et al (2015) Features of the GaAs wafers polishing by chemical–dynamic and non-contact chemical–mechanical methods [in Ukraininan]. Fiz i khim tv tila 16(3):560–564Google Scholar
  13. Vangala SR et al (2006) Molecular beam epitaxy and morphological studies of homoepitaxial layers on chemical mechanical polished InSb (100) and InSb (111) B substrates. J Vacc Sci Technol B 24(3):1634–1638CrossRefGoogle Scholar
  14. Vurgaftman I et al (2001) Band parameters for III–V compound semiconductors and their alloys. Appl Phys 89(11):5815–5875CrossRefGoogle Scholar
  15. Zhou X et al (2011) Optical properties of GaSb nanofibers. Nanoscale Res Lett 6(6):1–6Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V. Lashkaryov Institute of Semiconductor Physics NAS of UkraineKyivUkraine

Personalised recommendations