IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag(I) and Hg(II) ions

  • Inna V. Melnyk
  • Galyna I. Nazarchuk
  • Miroslava Václavíková
  • Yuriy L. Zub
Original Article


Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH ~ 2.


SBA-15-type mesoporous materials Complexing thiourea groups Thione-thiol tautomerism Ag(I) ions Hg(II) ions Adsorption 



The research was funded from the SASPRO Programme No. 1298/03/01.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

13204_2018_761_MOESM1_ESM.docx (238 kb)
Supplementary material 1 (DOCX 238 kb)


  1. Aguado J, Arsuaga JM, Arencibia A (2008) Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation. Micropor Mesopor Mater 109:513–524. CrossRefGoogle Scholar
  2. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52. CrossRefGoogle Scholar
  3. Bidhendi ME, Bidhendi GRN, Mehrdadi N, Rashedi H (2014) Modified mesoporous silica (SBA-15) with trithiane as a new effective adsorbent for mercury ions removal from aqueous environment. J Environ Health Sci Eng 12:100. CrossRefGoogle Scholar
  4. Burkett SL, Sims SD, Mann S (1996) Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem Commun: 1367–1368.
  5. Chytil S, Haugland L, Blekkan EA (2008) On the mechanical stability of mesoporous silica SBA-15. Micropor Mesopor Mater 111:134–142. CrossRefGoogle Scholar
  6. Dobryanskaya GI, Goncharik VP, Kozhara LI, Zub YuL, Dabrowski A (2009) Complex formation involving Hg2+ ions on the surface of the polysiloxane xerogels functionalized by 3-mercaptopropyl groups. Rus J Coordinat Chem 35(4):264–271. CrossRefGoogle Scholar
  7. Dudarko OA, Gunathilake C, Wickramaratne NP, SliesarenkoVV Zub YL, Górka J, Dai S, Jaronic M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids Surf A Physicochem Eng Asp 482:1–8. CrossRefGoogle Scholar
  8. Gona OI, Zub YuL, Yaroshenko NA, Goworek J (2008) Influence of synthesis conditions on the structure of mesoporous silicas containing thiourea functional group. Polish J Chem 82:299–306Google Scholar
  9. Hoang VD, Dang TP, Dinh QK, Nguyen HP, Vu AT (2010) The synthesis of novel hybrid thiol-functionalized nano-structured SBA-15. Adv Nat Sci: Nanosci Nanotechnol 1: 035011 (6 pp).
  10. Huirache-Acuña R, Nava R, Peza-Ledesma CL, Lara-Romero J, Alonso-Núñez G, Pawelec B, Rivera-Muñoz EM (2013) SBA-15 mesoporous silica as catalytic support for hydrodesulfurization catalysts—review. Materials 6:4139–4167. CrossRefGoogle Scholar
  11. Jaroniec M, Solovyov LA (2006) Assessment of ordered and complementary pore volumes in polymer-templated mesoporous silicas and organosilicas. Chem Commun. Google Scholar
  12. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. CrossRefGoogle Scholar
  13. Liu AM, Hidajat K, Kawi S, Zhao DY (2000) A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem Commun 13:1145–1146. CrossRefGoogle Scholar
  14. Luo Y, Yang P, Lin J (2008) Synthesis and characterization of urea bridged hybrid periodic mesoporous organosilica materials. Micropor Mesopor Mater 111:194–199. CrossRefGoogle Scholar
  15. Mel’nik IV, Stolyarchuk NV, Kozhara LI, Goncharik VP, Zub YuL (2013) Synthesis of bridged polysilsesquioxane xerogels with thiourea groups. Russ J Gen Chem 83(8):1613–1620. CrossRefGoogle Scholar
  16. Melnyk IV, Gona OI, Kozhara LI, Zub YuL, Yaroshenko NA, Kuznetsova TF, Ratko AI (2008) Study of Hg(II) sorption from its water solution by mesoporous silica with thiourea functional groups. In: Innocenzi P, Zub YuL, Kessler VG (eds) Sol-gel methods for materials processing (ARW NATO). Springer, Dordrecht, pp 375–381.
  17. Mercier L, Pinnavaia TJ (2000) Direct synthesis of hybrid organic–inorganic nanoporous silica by a neutral amine assembly route: structure-function control by stoichiometric incorporation of organosiloxane molecules. Chem Mater 12(1):188–196. CrossRefGoogle Scholar
  18. Meynen V, Cool P, Vansant EF (2007) Synthesis of siliceous materials with micro- and mesoporosity. Micropor Mesopor Mater 104:26–38. CrossRefGoogle Scholar
  19. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Micropor Mesopor Mater 125:170–223. CrossRefGoogle Scholar
  20. Milyutin VV, Gelis VM, Nekrasova NA, Melnyk IV, Dudarko OA, Sliesarenko VV, Zub YuL (2014) Sorption of actinide ions onto mesoporous phosphorus-containing silicas. Radiochemistry 56(3):262–266. CrossRefGoogle Scholar
  21. Mureseanu M, Reiss A, Cioatera N, Trandafir I, Hulea V (2010) Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media. J Hazard Mater 182:197–203. CrossRefGoogle Scholar
  22. Nazarchuk GI, Melnyk IV, Zub YuL, Makridina OI, Vezentsev AI (2013) Mesoporous silica containing ≡Si(CH2)3NHC(S)NHC2H5 functional groups in the surface layer. J Colloid Interf Sci 389:115–120. CrossRefGoogle Scholar
  23. Olkhovyk O, Jaroniec M (2007) Chemically-modified mesoporous silicas and organosilicas for adsorption and detection of heavy metal ions. In: Fryxell GE, Cao G (eds) Chemically-modified mesoporous silicas and organosilicas for adsorption and detection of heavy metal ions. Environmental applications of nanomaterials: synthesis, sorbents and sensors. ICP, London, pp 179–212Google Scholar
  24. Park J, Kim H, Park J (2012) Characteristics of thiol-functionalized mesoporous silica and its application to silver and cadmium ion removal. J Environ Sci Develop 3(2):81–85. CrossRefGoogle Scholar
  25. Perez-Quintanilla D, Del Hierro I, Fajardo M, Sierra I (2006) 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. J Hazard Mater 134:245–256. CrossRefGoogle Scholar
  26. Pogorilyi RP, Zub Yu L, Beganskienė A, Kareiva A (2014) Immobilization of urease on mesoporous materials such as SBA-15 with a functional surface layer. Chemija 25(2):75–81.
  27. Pomazkina OI, Filatova EG, Pozhidaev YuN (2017) Adsorption of Ni(II), Cu(II), and Zn(II) ions by natural alumosilicate modified with N, N′-bis(3-triethoxysilylpropyl)thiocarbamide. Prot Met Phys Chem Surf 53(3):416–421. CrossRefGoogle Scholar
  28. Sierra I, Perez-Quintanilla D (2013) Heavy metal complexation on hybrid mesoporous silicas: an approach to analytical applications. Chem Soc Rev 42:3792–3807. CrossRefGoogle Scholar
  29. Sliesarenko VV, Dudarko OA, Zub YL, Seisenbaeva GA, Kessler VG, Topka P, Solcova O (2013) One-pot synthesis of mesoporous SBA-15 containing protonated 3-aminopropyl groups. J Porous Mater 20:1315–1321. CrossRefGoogle Scholar
  30. Smirnova OV, Grebenyuk AG, Nazarchuk GI, Zub YuL (2015) Thione-thiol tautomerism of thiourea ligands on silica surface. Chem Phys Technol Surf 6(2):224–233. Google Scholar
  31. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867. CrossRefGoogle Scholar
  32. Thielemann JP, Girgsdies F, Schlög R, Hess C (2011) Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein J Nanotechnol. 2:110–118. CrossRefGoogle Scholar
  33. Vavsari VF, Ziarani GM, Badieic A (2015) The role of SBA-15 in drug delivery. RSC Adv 5:91686–91707. CrossRefGoogle Scholar
  34. Wang X, Lin KSK, Chan JCC, Cheng S (2004) Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-pot synthesis. Chem Commun. Google Scholar
  35. Wang L, Xing R, Liu S, Yu H, Qin Y, Li K, Feng J, Li R, Li P (2010) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180:577–582. CrossRefGoogle Scholar
  36. Wang W, Shan W, Ru H (2011) Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate. J Mater Chem 21:17433–17440. CrossRefGoogle Scholar
  37. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552. CrossRefGoogle Scholar
  38. Zhao SL, Chen FS, Zhang J, Ren SB, Liang HD, Li SS (2015) On-line flame AAS determination of traces Cd(II) and Pb(II) in water samples using thiol-functionalized SBA-15 as solid phase extractant. J Ind Eng Chem 27:362–367. CrossRefGoogle Scholar
  39. Zub YuL, Melnyk IV, Chuiko AA, Cauzzi D, Predieri G (2002) Design of functionalized polysiloxanes: synthesis and investigation of sulfur-containing xerogels with mono- and bifunctional surface-layer. Chem Phys Technol Surf 7:35–45. ISBN 978-966-00-0834-1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Inna V. Melnyk
    • 1
    • 2
  • Galyna I. Nazarchuk
    • 1
  • Miroslava Václavíková
    • 2
  • Yuriy L. Zub
    • 1
  1. 1.Chuiko Institute of Surface Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Geotechnics Slovak Academy of SciencesKosiceSlovak Republic

Personalised recommendations