Applied Nanoscience

, Volume 8, Issue 5, pp 1111–1121 | Cite as

Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments

  • Samantha Jardon
  • Carlos G. García
  • David Quintanar
  • José L. Nieto
  • María de Lourdes Juárez
  • Susana E. Mendoza
Original Article


The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN–GA) and polymeric nanoparticles (PNPS–GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25–100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs–GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.


Solid lipid nanoparticles Polymeric nanoparticles Glycyrrhizin acid Actin cytoskeleton Morphologic changes Cytotoxicity 



We are grateful to the Consejo Nacional de Ciencia y Tecnología (CONACYT) for grant # 486348/282140, awarded perform doctoral studies and for projects PIAPI 001, PIAPI 1602 and PIAPI 1655 (FESC-UNAM), CONACYT CB-221629, CONACYT INFRA 251940, and PAPITT IN18516 (DGAPA-UNAM). Thanks to M.C. Francisco Rodolfo González Diaz and M.C. Sofía González Gallardo, for their technical support during the realization of this work; and to laboratory 6 of the Unidad de Investigación Multidisciplinaria for facilitate the use of fluorescence microscope.

Compliance with ethical standards

Conflict of interest

The authors of this manuscript do not have any conflicts of interest related to the information cited herein.


  1. Aguilar-Rosas I, Alcalá-Alcalá S, Llera-Rojas V, Ganem-Rondero A (2015) Preparation and characterization of mucoadhesive nanoparticles of poly (methyl vinyl ether-co-maleic anhydride) containing glycyrrhizic acid intended for vaginal administration. Drug Dev Ind Pharm 41:1632–1639. CrossRefGoogle Scholar
  2. Alberts B (2014) Molecular biology of the cell, 6th edn. Garland Science, New YorkGoogle Scholar
  3. Albina E (1997) Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet Microbiol 55:309–316. CrossRefGoogle Scholar
  4. Angius F, Floris A (2015) Liposomes and MTT cell viability assay: an incompatible affair. Toxicol In Vitro 29:314–319. CrossRefGoogle Scholar
  5. Baltina LA, Kondratenko RM, Baltina LA, Baschenko NZ, Pl’yasunova OA (2009a) Synthesis and biological activity of new glycyrrhizic acid conjugates with amino acids and dipeptides. Russ J Bioorg Chem 35:510–517. CrossRefGoogle Scholar
  6. Baltina LA, Kondratenko RM, Baltina LA, Plyasunova OA, Pokrovskii AG, Tolstikov GA (2009b) Prospects for the creation of new antiviral drugs based on glycyrrhizic acid and its derivatives (a review). Pharm Chem J 43:539–548. CrossRefGoogle Scholar
  7. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045–2046. CrossRefGoogle Scholar
  8. Cooper GM, Hausman RE (2009) Cell death and cell renewal. The cell: a molecular approach. Sinauer and Associates, Sunderland, pp 693–722Google Scholar
  9. Dea S, Sawyer N, Alain R, Athanassious R (1995) Ultrastructural characteristics and morphogenesis of porcine reproductive and respiratory syndrome virus propagated in the highly permissive MARC-145 cell clone. Adv Exp Med Biol 380:95–98. CrossRefGoogle Scholar
  10. Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D (2000) Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Arch Virol 145:659–688. CrossRefGoogle Scholar
  11. Escalona RO (2017) Desarrollo y caracterización de nanopartículas con superficie modificada Como potenciales transportadores de fármacos a través de la barrera hematoencefálica. Tesis Maestría. Programa de Maestría y Doctorado en Ciencias Químicas. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  12. Escalona RO, Quintanar GD (2014) Nanogeles poliméricos: una nueva alternativa para la administración de fármacos. Rev Mex Cienc Farm 45:17–38Google Scholar
  13. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177. CrossRefGoogle Scholar
  14. Guirado BO, Solanas GM, Costa TI, Escrich EE (2002) El citoesqueleto de actina: una perspectiva desde la biología molecular del cáncer. Rev Cuba Invest Biomed 21:115–122Google Scholar
  15. Harada S (2005) The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. Biochem J 392:191–199. CrossRefGoogle Scholar
  16. Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173:383–394. CrossRefGoogle Scholar
  17. Irache JM (2008) In Nanomedicina nanopartículas con aplicaciones médicas. Anal Sist Sanit Navar SciELO Esp 31–1:7–10Google Scholar
  18. Izutani Y, Kanaori K, Oda M (2014) Aggregation property of glycyrrhizic acid and its interaction with cyclodextrins analyzed by dynamic light scattering, isothermal titration calorimetry, and NMR. Carbohydr Res 392:25–30. CrossRefGoogle Scholar
  19. Jabr-Milane L, Van Vlerken L, Devalapally H, Shenoy D, Komareddy S, Bhavsar M, Amiji M (2008) Multi-functional nanocarriers for targeted delivery of drugs and genes. J Control Reléase 130:121–128. CrossRefGoogle Scholar
  20. Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP (2015) Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS ONE 10:e0129039. CrossRefGoogle Scholar
  21. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA 106:19017–19022. CrossRefGoogle Scholar
  22. Kim HS, Kwang J, Yoon IJ, Joo HS, Frey ML (1993) Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch Virol 133:477–483. CrossRefGoogle Scholar
  23. Kim JH, Park EY, Ha HK, Jo CM, Lee WJ, Lee SS, Kim JW (2016) Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas J Anim Sci 29:288–298. CrossRefGoogle Scholar
  24. Kou L, Bhitia YD, Yao Q, He Z, Sun J, Ganapathy V (2018) Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol 9:27CrossRefGoogle Scholar
  25. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18CrossRefGoogle Scholar
  26. Liu C, Fallen MK, Miller H, Upadhyaya A, Song W (2013) The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor. Front Biol 8:475–485. CrossRefGoogle Scholar
  27. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196. CrossRefGoogle Scholar
  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. CrossRefGoogle Scholar
  29. Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242(1–2):121–128CrossRefGoogle Scholar
  30. Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2(1):108–119CrossRefGoogle Scholar
  31. Pellegrin S, Mellor H (2007) Actin stress fibres. J Cell Sci 120:3491–3499. CrossRefGoogle Scholar
  32. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477. CrossRefGoogle Scholar
  33. Pompei R, Flore O, Marccialis MA, Pani A, Loddo B (1979) Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 281:689–690. CrossRefGoogle Scholar
  34. Pompei R, Pani A, Flore O, Marcialis MA, Loddo B (1980) Antiviral activity of glycyrrhizic acid. Experientia 36:304. CrossRefGoogle Scholar
  35. Pompei R, Paghi L, Ingianni A, Uccheddu P (1983) Glycyrrhizic acid inhibits influenza virus growth in embryonated eggs. Microbiologica 6:247–250Google Scholar
  36. Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, Allémann E, Doelker E (2005) Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur J Pharm Sci 26:211–218. CrossRefGoogle Scholar
  37. Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Bauab TM (2018) Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomed 13:1179CrossRefGoogle Scholar
  38. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2:e526. CrossRefGoogle Scholar
  39. Tojkander S, Gateva G, Lappalainen P (2012) Actin stress fibers—assembly, dynamics and biological roles. J Cell Sci 125:1855–1864. CrossRefGoogle Scholar
  40. Urbán MZ (2015) Evaluación de la actividad terapéutica del ácido glicirricínico formulado en sistemas submicrónicos contra el virus de PRRS. Tesis doctoral. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  41. Zimmerman J, Benfield DA, Murtaugh MP, Osorio F, Stevenson GW, Torremorell M (2006) Porcine reproductive and respiratory syndrome virus (porcine arterivirus). Dis Swine 9:387–418Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Samantha Jardon
    • 1
  • Carlos G. García
    • 1
  • David Quintanar
    • 2
  • José L. Nieto
    • 1
  • María de Lourdes Juárez
    • 3
  • Susana E. Mendoza
    • 4
  1. 1.Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular)UNAM-FESC, Campus 4Cuautitlán IzcalliMexico
  2. 2.Laboratorio de Investigación y Posgrado en Tecnología FarmacéuticaUNAM-FESC, Campus 1Cuautitlán IzcalliMexico
  3. 3.Departamento de Morfología de la Facultad de Medicina Veterinaria y ZootecniaUNAM-FMVZMexico CityMexico
  4. 4.Laboratorio de Virología y Microbiología de las Enfermedades Respiratorias del CerdoUNAM-FESC, Campus 1Cuautitlán IzcalliMexico

Personalised recommendations