Skip to main content
Log in

Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Chitrakar R (1987) Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger. Hydrometallurgy 19(1):117–128

    Article  CAS  Google Scholar 

  • Alberti G, Massucci M (1970) Crystalline insoluble acid salts of tetravalent metals—IX. J Inorg Nucl Chem 32(5):1719–1727

    Article  CAS  Google Scholar 

  • Amphlett CB (1964) Inorganic ion exchangers. Elsevier, Amsterdam

    Google Scholar 

  • An J, Kang D, Tran K, Kim M, Lim T, Tran T (2012) Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118:64–70

    Article  Google Scholar 

  • Bohnke O (2008) The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics 179(1–6):9–15

    Article  CAS  Google Scholar 

  • Certificate of Analysis (1991) Standard reference material. Instrument sensitivity standard for X-ray powder diffraction. Nat Inst of Standards and Technology, Gaithersburg

    Google Scholar 

  • Chitrakar R, Makita Y, Ooi K, Sonoda A (2014) Lithium recovery from salt lake brine by H2TiO3. Dalton Trans 43(23):8933–8939

    Article  CAS  Google Scholar 

  • Cho N, Chang S, Sung H (1997) Synthesis and crystal structure refinement of LiMn(2−d)Ti(d)O4. RIST Yongu Nonmun 11:622–628

    CAS  Google Scholar 

  • Chung K, Lee J, Lee H (2014) Lithium recovery device using separator reservoir, lithium recovery method and lithium adsorption/desorption system using the same. US; 8741150

  • Chung K, Ryu T, Kim B, Ryu J (2017) Porous manganese oxide absorbent for lithium having spinel type structure and a method of manufacturing the same. US; 8926874

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  Google Scholar 

  • Dzyazko YS, Belyakov VN, Vasilyuk SL, Stefanyak NV (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773

    Article  CAS  Google Scholar 

  • Dzyazko YS, Rudenko AS, Yukhin YM, Palchik AV, Belyakov VN (2014a) Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination 342:52–60

    Article  CAS  Google Scholar 

  • Dzyazko YS, Volfkovich YM, Sosenkin VE, Nikolskaya NF, Gomza YP (2014b) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res: Let 9:271. https://doi.org/10.1186/1556-276X-9-271

    Article  CAS  Google Scholar 

  • Dzyazko YS, Rozhdestvenskaya LM, Zmievskii YG, Vilenskii AI, Myronchuk VG, Kornienko LV, Vasilyuk SL, Tsyba NN (2015) Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Let 10:64. https://doi.org/10.1186/s11671-015-0758-x

    Article  CAS  Google Scholar 

  • Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL, Kudelko KO, Belyakov VN (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12(1):438. https://doi.org/10.1186/s11671-017-2208-4

    Article  CAS  Google Scholar 

  • Epstein J, Feist E, Zmora J, Marcus Y (1981) Extraction of lithium from the dead sea. Hydrometallurgy 6(3–4):269–275

    Article  CAS  Google Scholar 

  • Gao D, Guo Y, Yu X, Wang S, Deng T (2016) Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths. J Chem Eng Jpn 49(2):104–110

    Article  CAS  Google Scholar 

  • Gregg S, Sing K (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  • Hamzaoui A, M’nif A, Hammi H, Rokbani R (2003) Contribution to the lithium recovery from brine. Desalination 158(1–3):221–224

    Article  CAS  Google Scholar 

  • Heidari N, Momeni P (2017) Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide. Environ Earth Sci. https://doi.org/10.1007/s12665-017-6885-1

    Article  Google Scholar 

  • Helfferich F (1995) Ion exchange. Dover Publications, New York

    Google Scholar 

  • Hong JG, Chen Y (2015) Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. J Membr Sci 473:210–217

    Article  Google Scholar 

  • Hong H, Park I, Ryu T, Ryu J, Kim B, Chung K (2013) Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chem Eng J 234:16–22

    Article  CAS  Google Scholar 

  • Hong H, Park I, Ryu J, Ryu T, Kim B, Chung K (2015) Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater. Chem Eng J 271:71–78

    Article  CAS  Google Scholar 

  • Hong HJ, Ryu T, Park I-S, Kim M, Shin J, Kim B-G, Chung K-S (2018) Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater Chem. Eng J. 337:455–461

    CAS  Google Scholar 

  • Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63

    Article  CAS  Google Scholar 

  • Huang Z-Q, Zheng F, Zhang Z, Xu H-T, Zhou K-M (2012) The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation. Desalination 292:64–72

    Article  CAS  Google Scholar 

  • Jiang J (2012) Synthesis and research of lithium manganese titanium oxide. Adv Mater Res 549:466–469

    Article  CAS  Google Scholar 

  • Kam S, Park J, Lee M (2015) Adsorption characteristics of lithium ions from aqueous solution using a novel adsorbent SAN-LMO beads. J Environ Sci Int 24(5):641–646

    Article  Google Scholar 

  • Kim J, Nielsen UG, Grey CP (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (γ-FeOOH) and goethite (α-FeOOH): a 2H and 7Li solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295

    Article  CAS  Google Scholar 

  • Kudelko K, Maltseva T, Belyakov V (2011) Adsorption and mobility of Cu(II), Cd(II), Pb(II) ions adsorbed on (hydr)oxide polymer sorbents MxOy·nH2O, M = Zr (IV), Ti(IV), Sn (IV), Mn(IV). Desalin Water Treat 35(1–3):295–299

    CAS  Google Scholar 

  • Lambert P, Harrison M, Edwards P (1988) Magnetism and superconductivity in the spinel system Li1−xMxTi2O4 (M = Mn2+, Mg2+). J Solid State Chem 75(2):332–346

    Article  CAS  Google Scholar 

  • Mal’tseva TV, Yatsenko TV, Kudelko EO, Belyakov VN (2011) The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ J Appl Chem 84(5):726–731

    Article  Google Scholar 

  • Martı-Calatayud MC, Garcıa-Gabaldon M, Perez-Herranz V, Salesb S, Mestre S (2015) Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv 5:46348–46358

    Article  Google Scholar 

  • Miyamoto Y, Kuroda Y, Uematsu T, Oshikawa H, Shibata N, Ikuhara Y et al (2015) Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical and catalytic properties. Sci Rep. https://doi.org/10.1038/srep15011

    Article  Google Scholar 

  • Mora-Gómez J, García-Gabaldón M, Martí-Calatayud MC, Mestre S, Pérez-Herranz V (2017) Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. J Am Ceran Soc 100(9):4180–4189

    Article  Google Scholar 

  • Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic–inorganic membranes for filtration of corn distillery. Acta Period Technol 47:153–165

    Article  CAS  Google Scholar 

  • Ooi K, Miyai Y, Katoh S (1986) Recovery of lithium from seawater by manganese oxide adsorbent. Sep Sci Technol 21(8):755–766

    Article  CAS  Google Scholar 

  • Pang R, Li X, Li J, Lu Z, Sun X, Wang L (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66

    Article  CAS  Google Scholar 

  • Park H, Singhal N, Jho E (2015) Lithium sorption properties of HMnO in seawater and wastewater. Water Res 87:320–327

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Math Phys Kl 2:98–100

    Google Scholar 

  • Shi X, Zhang Z, Zhou D, Zhang L, Chen B, Yu L (2013) Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans. Nonferr. Metals Soc. China 23(1):253–259

    Article  CAS  Google Scholar 

  • Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91(10):2549–2562

    Article  CAS  Google Scholar 

  • Tretyak M, Rozhdesvenska L, Belyakov V (2013) Inorganic ion exchange materials based on hydrated titanium dioxide as promising ionites for lithium recovery. Ukr Chem J 79(3):15–20

    CAS  Google Scholar 

  • Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K (2002) Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Ind Eng Chem Res 41(17):4281–4287

    Article  CAS  Google Scholar 

  • Xiao J, Sun S, Song X, Li P, Yu J (2015) Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve. Chem Eng J 279:659–666

    Article  CAS  Google Scholar 

  • Zhang C-P, Gu P, Zhao J, Zhang D, Deng Y (2009) Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate. J Hazard Mater 167(1–3):1057–1062

    Article  CAS  Google Scholar 

  • Zhang Q, Li S, Sun S, Yin X, Yu J (2010) Lithium selective adsorption on low-dimensional titania nanoribbons. Chem Eng Sci 65(1):165–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by projects within the framework of programs supported by the National Academy of Science of Ukraine “Fundamental problems of creation of new materials for chemical industry” (Grant No. 49/12).

Author information

Authors and Affiliations

Authors

Contributions

MC investigated sorption properties of the materials and prepared the manuscript; LR provided porosimetric and thermogravimetric measurements; PO synthesized the samples; YD studied chemical composition and morphology of the samples; OD provided X-ray analysis.

Corresponding author

Correspondence to M. O. Chaban.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaban, M.O., Rozhdestvenska, L.M., Palchyk, O.V. et al. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Appl Nanosci 9, 1037–1045 (2019). https://doi.org/10.1007/s13204-018-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0749-1

Keywords

Navigation