Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

  • M. O. Chaban
  • L. M. Rozhdestvenska
  • O. V. Palchyk
  • Y. S. Dzyazko
  • O. G. Dzyazko
Original Article


A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.


Nanoparticles Titanium dioxide Manganese dioxide Lithium Sorption 



The work was supported by projects within the framework of programs supported by the National Academy of Science of Ukraine “Fundamental problems of creation of new materials for chemical industry” (Grant No. 49/12).

Author contributions

MC investigated sorption properties of the materials and prepared the manuscript; LR provided porosimetric and thermogravimetric measurements; PO synthesized the samples; YD studied chemical composition and morphology of the samples; OD provided X-ray analysis.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. Abe M, Chitrakar R (1987) Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger. Hydrometallurgy 19(1):117–128CrossRefGoogle Scholar
  2. Alberti G, Massucci M (1970) Crystalline insoluble acid salts of tetravalent metals—IX. J Inorg Nucl Chem 32(5):1719–1727CrossRefGoogle Scholar
  3. Amphlett CB (1964) Inorganic ion exchangers. Elsevier, AmsterdamGoogle Scholar
  4. An J, Kang D, Tran K, Kim M, Lim T, Tran T (2012) Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118:64–70CrossRefGoogle Scholar
  5. Bohnke O (2008) The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics 179(1–6):9–15CrossRefGoogle Scholar
  6. Certificate of Analysis (1991) Standard reference material. Instrument sensitivity standard for X-ray powder diffraction. Nat Inst of Standards and Technology, GaithersburgGoogle Scholar
  7. Chitrakar R, Makita Y, Ooi K, Sonoda A (2014) Lithium recovery from salt lake brine by H2TiO3. Dalton Trans 43(23):8933–8939CrossRefGoogle Scholar
  8. Cho N, Chang S, Sung H (1997) Synthesis and crystal structure refinement of LiMn(2−d)Ti(d)O4. RIST Yongu Nonmun 11:622–628Google Scholar
  9. Chung K, Lee J, Lee H (2014) Lithium recovery device using separator reservoir, lithium recovery method and lithium adsorption/desorption system using the same. US; 8741150Google Scholar
  10. Chung K, Ryu T, Kim B, Ryu J (2017) Porous manganese oxide absorbent for lithium having spinel type structure and a method of manufacturing the same. US; 8926874Google Scholar
  11. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefGoogle Scholar
  12. Dzyazko YS, Belyakov VN, Vasilyuk SL, Stefanyak NV (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773CrossRefGoogle Scholar
  13. Dzyazko YS, Rudenko AS, Yukhin YM, Palchik AV, Belyakov VN (2014a) Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination 342:52–60CrossRefGoogle Scholar
  14. Dzyazko YS, Volfkovich YM, Sosenkin VE, Nikolskaya NF, Gomza YP (2014b) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res: Let 9:271. CrossRefGoogle Scholar
  15. Dzyazko YS, Rozhdestvenskaya LM, Zmievskii YG, Vilenskii AI, Myronchuk VG, Kornienko LV, Vasilyuk SL, Tsyba NN (2015) Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Let 10:64. CrossRefGoogle Scholar
  16. Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL, Kudelko KO, Belyakov VN (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12(1):438. CrossRefGoogle Scholar
  17. Epstein J, Feist E, Zmora J, Marcus Y (1981) Extraction of lithium from the dead sea. Hydrometallurgy 6(3–4):269–275CrossRefGoogle Scholar
  18. Gao D, Guo Y, Yu X, Wang S, Deng T (2016) Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths. J Chem Eng Jpn 49(2):104–110CrossRefGoogle Scholar
  19. Gregg S, Sing K (1982) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  20. Hamzaoui A, M’nif A, Hammi H, Rokbani R (2003) Contribution to the lithium recovery from brine. Desalination 158(1–3):221–224CrossRefGoogle Scholar
  21. Heidari N, Momeni P (2017) Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide. Environ Earth Sci. Google Scholar
  22. Helfferich F (1995) Ion exchange. Dover Publications, New YorkGoogle Scholar
  23. Hong JG, Chen Y (2015) Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. J Membr Sci 473:210–217CrossRefGoogle Scholar
  24. Hong H, Park I, Ryu T, Ryu J, Kim B, Chung K (2013) Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chem Eng J 234:16–22CrossRefGoogle Scholar
  25. Hong H, Park I, Ryu J, Ryu T, Kim B, Chung K (2015) Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater. Chem Eng J 271:71–78CrossRefGoogle Scholar
  26. Hong HJ, Ryu T, Park I-S, Kim M, Shin J, Kim B-G, Chung K-S (2018) Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater Chem. Eng J. 337:455–461Google Scholar
  27. Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63CrossRefGoogle Scholar
  28. Huang Z-Q, Zheng F, Zhang Z, Xu H-T, Zhou K-M (2012) The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation. Desalination 292:64–72CrossRefGoogle Scholar
  29. Jiang J (2012) Synthesis and research of lithium manganese titanium oxide. Adv Mater Res 549:466–469CrossRefGoogle Scholar
  30. Kam S, Park J, Lee M (2015) Adsorption characteristics of lithium ions from aqueous solution using a novel adsorbent SAN-LMO beads. J Environ Sci Int 24(5):641–646CrossRefGoogle Scholar
  31. Kim J, Nielsen UG, Grey CP (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (γ-FeOOH) and goethite (α-FeOOH): a 2H and 7Li solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295CrossRefGoogle Scholar
  32. Kudelko K, Maltseva T, Belyakov V (2011) Adsorption and mobility of Cu(II), Cd(II), Pb(II) ions adsorbed on (hydr)oxide polymer sorbents MxOy·nH2O, M = Zr (IV), Ti(IV), Sn (IV), Mn(IV). Desalin Water Treat 35(1–3):295–299Google Scholar
  33. Lambert P, Harrison M, Edwards P (1988) Magnetism and superconductivity in the spinel system Li1−xMxTi2O4 (M = Mn2+, Mg2+). J Solid State Chem 75(2):332–346CrossRefGoogle Scholar
  34. Mal’tseva TV, Yatsenko TV, Kudelko EO, Belyakov VN (2011) The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ J Appl Chem 84(5):726–731Google Scholar
  35. Martı-Calatayud MC, Garcıa-Gabaldon M, Perez-Herranz V, Salesb S, Mestre S (2015) Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv 5:46348–46358CrossRefGoogle Scholar
  36. Miyamoto Y, Kuroda Y, Uematsu T, Oshikawa H, Shibata N, Ikuhara Y et al (2015) Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical and catalytic properties. Sci Rep. Google Scholar
  37. Mora-Gómez J, García-Gabaldón M, Martí-Calatayud MC, Mestre S, Pérez-Herranz V (2017) Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. J Am Ceran Soc 100(9):4180–4189CrossRefGoogle Scholar
  38. Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic–inorganic membranes for filtration of corn distillery. Acta Period Technol 47:153–165CrossRefGoogle Scholar
  39. Ooi K, Miyai Y, Katoh S (1986) Recovery of lithium from seawater by manganese oxide adsorbent. Sep Sci Technol 21(8):755–766CrossRefGoogle Scholar
  40. Pang R, Li X, Li J, Lu Z, Sun X, Wang L (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66CrossRefGoogle Scholar
  41. Park H, Singhal N, Jho E (2015) Lithium sorption properties of HMnO in seawater and wastewater. Water Res 87:320–327CrossRefGoogle Scholar
  42. Scherrer P (1918) Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Math Phys Kl 2:98–100Google Scholar
  43. Shi X, Zhang Z, Zhou D, Zhang L, Chen B, Yu L (2013) Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans. Nonferr. Metals Soc. China 23(1):253–259CrossRefGoogle Scholar
  44. Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91(10):2549–2562CrossRefGoogle Scholar
  45. Tretyak M, Rozhdesvenska L, Belyakov V (2013) Inorganic ion exchange materials based on hydrated titanium dioxide as promising ionites for lithium recovery. Ukr Chem J 79(3):15–20Google Scholar
  46. Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K (2002) Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Ind Eng Chem Res 41(17):4281–4287CrossRefGoogle Scholar
  47. Xiao J, Sun S, Song X, Li P, Yu J (2015) Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve. Chem Eng J 279:659–666CrossRefGoogle Scholar
  48. Zhang C-P, Gu P, Zhao J, Zhang D, Deng Y (2009) Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate. J Hazard Mater 167(1–3):1057–1062CrossRefGoogle Scholar
  49. Zhang Q, Li S, Sun S, Yin X, Yu J (2010) Lithium selective adsorption on low-dimensional titania nanoribbons. Chem Eng Sci 65(1):165–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. O. Chaban
    • 1
  • L. M. Rozhdestvenska
    • 1
  • O. V. Palchyk
    • 1
  • Y. S. Dzyazko
    • 1
  • O. G. Dzyazko
    • 2
  1. 1.V.I. Vernadskii Institute of General and Inorganic Chemistry of National Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko National University of KyivKievUkraine

Personalised recommendations