Gold nanoparticles as a factor of influence on doxorubicin–bovine serum albumin complex

  • N. A. Goncharenko
  • O. L. Pavlenko
  • O. P. Dmytrenko
  • M. P. Kulish
  • A. M. Lopatynskyi
  • V. I. Chegel
Original Article


The interaction between doxorubicin (Dox) and bovine serum albumin (BSA) complex with gold nanoparticles (AuNPs) was investigated by optical spectroscopy. The optical absorption of Dox and BSA solutions was studied. The formation of Dox–BSA complexes with a binding constant K = 7.56 × 106 M−2 and the number of binding sites n = 2 was found out. With pH 6.9, the concentration of complexes is an order of magnitude lower than the concentration of unbound antibiotic molecules. Optical absorption in solutions of Dox–BSA conjugates in the presence of AuNPs undergoes a significant rearrangement, which manifests the changes in the magnitude of the hydrophobic interaction of BSA with Dox, changes in the conformational state of antibiotic, and, as a consequence, a plasmon-induced change in the mechanism of complex formation. The aggregation of the Dox–AuNPs conjugate depends on the presence and concentration of BSA and in the case of formation of the Dox–BSA complex is minimal.


Doxorubicin Bovine serum albumin Gold nanoparticles Conformational state Hydrophobic interaction Electrostatic interaction Localized surface plasmon resonance 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  2. Anker JN, Hall WP, Lambert MP, Velasco PT, Mrksich M, Klein WL et al (2009) Detection and identification of bioanalytes with high resolution LSPR spectroscopy and MALDI mass spectrometry. J Phys Chem C 113:5891–5894CrossRefGoogle Scholar
  3. Arcamone F (1981) Doxorubicin: anticancer antibiotics. Academic Press, New YorkGoogle Scholar
  4. Bi S, Sun Y, Qiao C, Zhang H, Liu C (2009) Binding of several anti-tumor drugs to bovine serum albumin: fluorescence study. J Lumin 129:541–547CrossRefGoogle Scholar
  5. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34:106–135CrossRefGoogle Scholar
  6. Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer, DordrechtCrossRefGoogle Scholar
  7. Chegel V, Rachkov O, Lopatynskyi A, Ishihara S, Yanchuk I, Nemoto Y et al (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116:2683–2690CrossRefGoogle Scholar
  8. Chekman IS, Belenichev IF, Gorchakova NA, Kucherenko LI, Bukhtiyarova NV, Pogotova GA (2014) Antioxidants: clinical and pharmacological aspects. Ukr Med J 1:22–28 (in Russian) Google Scholar
  9. Chen Z, Mao R, Liu Y (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 13:1035–1045CrossRefGoogle Scholar
  10. Dallavalle M, Leonzio M, Calvaresi M, Zerbetto F (2014) Explaining fullerene dispersion by using micellar solutions. ChemPhysChem 15:2998–3005CrossRefGoogle Scholar
  11. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422CrossRefGoogle Scholar
  12. Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM et al (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine 8:1191–1208CrossRefGoogle Scholar
  13. Durackova Z (2010) Some current insights into oxidative stress. Physiol Res 59:459–469Google Scholar
  14. Dykman LA, Bogatyrev VA, Shchyogolev SU, Khlebtsov NG (2008) Gold nanoparticles: synthesis, properties, biomedical application. Nauka, Moscow (in Russian) Google Scholar
  15. Evstigneev MP, Buchelnikov AS, Voronin DP, Rubin YV, Belous LF, Prylutskyy YI et al (2013) Complexation of C60 fullerene with aromatic drugs. ChemPhysChem 14:568–578CrossRefGoogle Scholar
  16. Fiorante PF, Martins RD, Palma MSA (2015) Development and validation of analytical methodology with focus on the qualification of powder mixers. Braz J Pharm Sci 51:273–284CrossRefGoogle Scholar
  17. Gautier J, Allard-Vannier E, Munnier E, Soucé M, Chourpa I (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 169:48–61CrossRefGoogle Scholar
  18. Gorchakova NO, Chekman IS, Vlasova NM, Golovkova LP, Gerashenko II, Maximchuk OO (2011) Doxorubicin complexation with bovine serum albumin. Rep Natl Acad Sci Ukr 4:177–181 (in Ukrainian) Google Scholar
  19. Honary S, Jahanshahi M, Golbayani P, Ebrahimi P, Ghajar K (2010) Doxorubicin-loaded albumin nanoparticles: formulation and characterization. J Nanosci Nanotechnol 10:7752–7757CrossRefGoogle Scholar
  20. Iskra RJ, Vlizlo VV (2013) Peculiarities of antioxidant defense system in erythroid cells and tissues of pigs under action of chromium chloride. Ukr Biochem J 85:96–102 (in Ukrainian) CrossRefGoogle Scholar
  21. Kalinkina NV (2004) Anthracycline cardiomyopathy. Ukr J Cardiol 2:112–116 (in Russian) Google Scholar
  22. Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38:504CrossRefGoogle Scholar
  23. Krohn K (1983) Book review: anthracycline antibiotics. Edited By H. S. El Khadem. Angew Chem Int Ed Engl 22:895–896CrossRefGoogle Scholar
  24. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648CrossRefGoogle Scholar
  25. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7CrossRefGoogle Scholar
  26. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126CrossRefGoogle Scholar
  27. McFarland AD, Haynes CL, Mirkin CA, Van Duyne RP, Godwin HA (2004) Color my nanoworld. J Chem Educ 81:544ACrossRefGoogle Scholar
  28. Meshalkin YP, Bgatova NP (2008) Prospects and problems of the use of inorganics nanoparticles in oncology. J Sib Fed Univ Biol 3:248–268 (Review) (in Russian) Google Scholar
  29. Mirza AZ, Shamshad H (2011) Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur J Med Chem 46:1857–1860CrossRefGoogle Scholar
  30. Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041CrossRefGoogle Scholar
  31. Mosunov AA, Pashkova IS, Sidorova M, Pronozin A, Lantushenko AO, Prylutskyy YI et al (2017) Determination of the equilibrium constant of C60 fullerene binding with drug molecules. Phys Chem Chem Phys 19:6777–6784CrossRefGoogle Scholar
  32. Murray WA, Auguié B, Barnes WL (2009) Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J Phys Chem C 113:5120–5125CrossRefGoogle Scholar
  33. National Center for Biotechnology Information (2005) Doxorubicin. PubChem Open Chemistry Database. Accessed 24 Mar 2018
  34. Orel V, Romanov A, Rykhalskyi O, Shevchenko A, Orel I, Burlaka A et al (2016) Antitumor effect of superparamagnetic iron oxide nanoparticles conjugated with doxorubicin during magnetic nanotherapy of Lewis Lung carcinoma. Materialwiss Werkstofftech 47:165–171CrossRefGoogle Scholar
  35. Pawar SK, Vavia P (2015) Efficacy interactions of PEG–DOX–N-acetyl glucosamine prodrug conjugate for anticancer therapy. Eur J Pharm Biopharm 97:454–463CrossRefGoogle Scholar
  36. Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR (2012) Design, synthesis and evaluation of N-acetyl glucosamine (NAG)–PEG–doxorubicin targeted conjugates for anticancer delivery. Int J Pharm 436:183–193CrossRefGoogle Scholar
  37. Peters T Jr (1985) Serum albumin. Adv Protein Chem 37:161–245CrossRefGoogle Scholar
  38. Polumbryk M, Ivanov S, Polumbryk O (2013) Antioxidants in food systems. Mechanism of action. Ukr J Food Sci 1:15–40Google Scholar
  39. Prylutskyy YI, Evstigneev MP, Pashkova IS, Wyrzykowski D, Woziwodzka A, Gołuński G et al (2014) Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys 16:23164–23172CrossRefGoogle Scholar
  40. Prylutskyy YI, Evstigneev MP, Cherepanov VV, Kyzyma OA, Bulavin LA, Davidenko NA et al (2015) Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents. J Nanopart Res 17:45CrossRefGoogle Scholar
  41. Reznikov OH, Polumbryk OM, Balion YH, Polumbryk MO (2014) Pro- and antioxidant systems and pathological processes in humans. Visn Nac Akad Nauk Ukr 10:17–29 (in Ukrainian) CrossRefGoogle Scholar
  42. Sturgeon RJ, Schulman SG (1977) Electronic absorption spectra and protolytic equilibria of doxorubicin: direct spectrophotometric determination of microconstants. J Pharm Sci 66:958–961CrossRefGoogle Scholar
  43. Tevyashova AN (2014) Creation of anthracycline prodrugs. Vestnik MITHT 9:11–25 (in Russian) Google Scholar
  44. Tian B, Ding Y, Han J, Zhang J, Han Y, Han J (2015) N-Acetyl-d-glucosamine decorated polymeric nanoparticles for targeted delivery of doxorubicin: synthesis, characterization and in vitro evaluation. Colloids Surf B Biointerfaces 130:246–254CrossRefGoogle Scholar
  45. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  46. Wang Q, Zhong YJ, Yuan JP, Shao LH, Zhang J, Tang L et al (2013) Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: a preclinical study. J Transl Med 11:192CrossRefGoogle Scholar
  47. Yatsymirskyy КB, Vasiliev VP (1959) The instability constants of complex compounds. Publishing House of the USSR Academy of Sciences, Moscow (in Russian) Google Scholar
  48. Yeshchenko OA, Kutsevol NV, Naumenko AP (2016) Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics 11:345–350CrossRefGoogle Scholar
  49. You J, Shao R, Wei X, Gupta S, Li C (2010) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6:1022–1031CrossRefGoogle Scholar
  50. Zhang Q, Ni Y, Kokot S (2016) Competitive interactions between glucose and lactose with BSA: which sugar is better for children? Analyst 141:2218–2227CrossRefGoogle Scholar
  51. Zhong YJ, Shao LH, Li Y (2013) Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. Int J Oncol 42:373–383 (Review) CrossRefGoogle Scholar
  52. Zhou Y, Xu H, Dahlin AB, Vallkil J, Borrebaeck CAK, Wingren C et al (2007) Quantitative interpretation of gold nanoparticle-based bioassays designed for detection of immunocomplex formation. Biointerphases 2:6–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Goncharenko
    • 1
  • O. L. Pavlenko
    • 1
  • O. P. Dmytrenko
    • 1
  • M. P. Kulish
    • 1
  • A. M. Lopatynskyi
    • 2
    • 3
  • V. I. Chegel
    • 2
    • 3
  1. 1.Faculty of PhysicsTaras Shevchenko National University of KyivKievUkraine
  2. 2.V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of UkraineKievUkraine
  3. 3.Institute of High TechnologiesTaras Shevchenko National University of KyivKievUkraine

Personalised recommendations