Advertisement

Applied Nanoscience

, Volume 8, Issue 5, pp 1149–1160 | Cite as

Oxidized guar gum–ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity

  • Vandana Singh
  • Lalit Mohan Dwivedi
  • Kirti Baranwal
  • Sugandha Asthana
  • Shanthy Sundaram
Original Article
  • 9 Downloads

Abstract

In the present study, guar gum (GG) and oxidized guar gum (OGG) have been used for modulating the antibacterial activity of ZnO. Oxidized guar gum–zinc oxide (OGG–ZnO) or guar gum–zinc oxide (GG–ZnO) nanostructures were synthesized by adding aqueous ammonia to zinc acetate solution in the presence of OGG or GG, respectively. OGG could significantly enhance the antibacterial activity of ZnO for a range of Gram-negative and Gram-positive bacterial strains and this enhancement was most pronounced for Bacillus subtilis and Salmonella typhi. At the same time, GG–ZnO nanostructures were found to be less bioactive than the pure ZnO for the same strains. TEM analysis revealed that optimum OGG–ZnO nanostructure (Z4) is of ~ 200 nm size, oblong in shape, and has slightly clustered texture, while XRD confirmed its crystalline structure with hexagonal phase. The extra surface oxygen species (thus oxygen deficiency) has been assigned for better antibacterial behavior of OGG–ZnO. The study may be extended for other polysaccharide/derivatives to obtain ZnO nanostructures with enhanced antibacterial properties.

Keywords

Guar gum Oxidized guar gum ZnO hybrid Antibacterial activity 

Notes

Acknowledgements

Authors thank MNIT, Jaipur, for FTIR, SEM and TEM instrumental facilities. Dr. Lokendra Kumar, Physics Department of University of Allahabad, is acknowledged for XRD facility. Author LMD thanks U.G.C, New Delhi, for the financial support to carry out this work.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Aal NA, Al-Hazmi F, Al-Ghamdi AA, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties. Spectrochim Acta 135:871–877CrossRefGoogle Scholar
  2. Bhadra P, Mitra MK, Das GC, Dey R, Mukherjee S (2011) Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater Sci Eng, C 31(5):929–937CrossRefGoogle Scholar
  3. Bharati P, Aslam M, Misra DS, Bahadur D (2009) Polymer- mediated shape selective synthesis of ZnO nanostructures using a single-step aqueous approach. Cryst Eng Com 11(9):1920–1925CrossRefGoogle Scholar
  4. Bramhill J, Ross S, Ross G (2017) Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health 14(1):1–21CrossRefGoogle Scholar
  5. Carpa O, Tirsoagab A, Jurcab B, Enea R, Somacescua S, Ianculescu A (2015) Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures. Carbohydr Polym 115:285–293CrossRefGoogle Scholar
  6. Colmer-Hamood JA, Dzvova N, Kruczek C, Hamood AN (2016) Chapter Six-In vitro analysis of Pseudomonas aeruginosa virulence using conditions that mimic the environment at specific infection sites. Progress Mol Biol Trans Sci 142:151–191CrossRefGoogle Scholar
  7. Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120CrossRefGoogle Scholar
  8. Dananjaya SHS, Saravana Kumar R, Yang M, Nikapitiya C, Lee J, De Zoysa M (2018) Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. Int J Biol Macromol 108:1281–1288CrossRefGoogle Scholar
  9. Das D, Ara T, Dutta S, Mukherjee A (2011) New water resistant biomaterial biocide film based on guar gum. Bioresour Technol 102(10):5878–5883CrossRefGoogle Scholar
  10. Dhanalakshmi A, Palanimurugan A, Natarajan B (2017) Enhanced antibacterial effect using carbohydrates biotemplate of ZnO nano thin films. Carbohydr Polym 168:191–200CrossRefGoogle Scholar
  11. Dinesh VP, Biji P, Anuradha A, Dhara SK, Kamaruddin M, Tyagi AK, Raj B (2014) Plasmon-mediated highly enhanced photocatalytic degradation of industrial textile effluent dyes using hybrid ZnO@Ag core-shell nanorod. RSC Adv 4(103):58930–58940CrossRefGoogle Scholar
  12. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284CrossRefGoogle Scholar
  13. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9:e111289CrossRefGoogle Scholar
  14. Elkady MF, Hassan HS, Hafez EE, Fouad A (2015) Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorg Chem Appl 2015:1–20CrossRefGoogle Scholar
  15. Elzoghby O, Hemasa AL, Freag MS (2016) Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Controlled Release 243:303–322CrossRefGoogle Scholar
  16. Feng X, Yan Y, Wan B, Li W, Jaisi DP, Zheng L, Zhang J, Liu F (2016) Enhanced dissolution and transformation of ZnO nanoparticles: The role of inositol hexakisphosphate. Environ Sci Technol 50(11):5651–5660CrossRefGoogle Scholar
  17. Gershman MD, Kennedy DJ, Noble-Wang J, Kim C, Gullion J, Kacica M, Jensen B, Pascoe N, Saiman L, McHale J, Wilkins M, Schoonmaker-Bopp D, Clayton J, Arduino M, Srinivasan A (2008) Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis 47(11):1372–1379CrossRefGoogle Scholar
  18. Gong H, Liu M, Zhang B, Cui D, Gao C, Ni B, Chen J (2011) Synthesis of oxidized guar gum by dry method and its application in reactive dye printing. Int J Biol Macromol 49(5):1083–1091CrossRefGoogle Scholar
  19. Hecht H, Srebnik S (2016) Structural characterization of sodium alginate and calcium alginate. Biomacromol 17(6):2160–2167CrossRefGoogle Scholar
  20. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY-C, Loo JS-C (2010) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48(6):1762–1766CrossRefGoogle Scholar
  21. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  22. Janaki AC, Sailatha S, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta 144:17–22CrossRefGoogle Scholar
  23. Jesline A, John NP, Narayanan PM, Murugan S (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5(2):157–162CrossRefGoogle Scholar
  24. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625CrossRefGoogle Scholar
  25. Jurca B, Tirsoaga A, Ianculescu A, Carp O (2014) Influence of the synthesis parameters on the thermal behaviour of some ZnO–starch composite. J Therm Anal Calorim 115(1):495–501CrossRefGoogle Scholar
  26. Kang B, Dai Yd, Zhang H, Chen D (2007) Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polym Degrad Stab 92(3):359–362CrossRefGoogle Scholar
  27. Karkey A, Thwaites GE, Baker S (2018) The evolution of antimicrobial resistance in Salmonella typhi. Curr Opin Gastroenterol 34(1):25–30CrossRefGoogle Scholar
  28. Khan TA, Nazir M, Ali I, Kumar A (2017) Removal of chromium(VI) from aqueous solution using guar gum nano-zinc oxide biocomposite adsorbent. Arabian J Chem 10(2):S2388–S2398CrossRefGoogle Scholar
  29. Li G, Hu T, Pan G, Yan T, Gao X, Zhu H (2008) Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112(31):11859CrossRefGoogle Scholar
  30. Little DC, Jerry Dolovich J (1973) Respiratory disease in industry due to B. subtilis enzyme preparations. Can Med Assoc J 108(9):1120–1125Google Scholar
  31. Ma Y, Bao C, Liu J, Hao X, Cao J, Ye L, Yang J (2018) Microbiological characterization of Klebsiella pneumoniae isolates causing blood stream infections from five tertiary hospitals in Beijing, China. J Global Antiomicrob Resis 12:162–166Google Scholar
  32. Ma J, Zhu W, Tian Y, Wang Z (2016) Preparation of zinc oxide-starch nanocomposite and its application on coating. Nanoscale Res Lett 11:200CrossRefGoogle Scholar
  33. Matei A, Cernica I, Cadar O, Roman C, Schiopu V (2008) Synthesis and characterization of ZnO—polymer nanocomposites. Int J Mater Form 1(1):767–770CrossRefGoogle Scholar
  34. Meraat R, Ziabari AA, Issazadeh K, Shadan N, Jalali KM (2016) Synthesis and characterization of the antibacterial activity of zinc oxide nanoparticles against Salmonella typhi. Acta Metall Sin (Engl Lett) 29(7):601–608CrossRefGoogle Scholar
  35. Mirhosseini M, Arjmand V (2014) Reducing pathogens by using zinc oxide nanoparticles and acetic acid in sheep meat. J Food Prot 77(9):1599–1604CrossRefGoogle Scholar
  36. Mote VD, Purushotham Y, Shinde RS, Salunke SD, Dole BN (2015) Structural, optical and antibacterial properties of yttrium doped ZnO nanoparticles. Cerâmica 61:457–461CrossRefGoogle Scholar
  37. Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH (2014) Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett 24(17):4298–4303CrossRefGoogle Scholar
  38. Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439CrossRefGoogle Scholar
  39. Nemade SN, Sawarkar SB (2015) Recovery and synthesis of guar gum and its derivatives. Int J Adv Res Chem Sci 2:33–40Google Scholar
  40. Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M (2017a) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packaging and Shelf Life 11:106–114CrossRefGoogle Scholar
  41. Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V (2017b) Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 99:530–538CrossRefGoogle Scholar
  42. Oualid HA, Essamlali Y, Amadine OA, Daanoun A, Zahouily M (2017) Green synthesis of Ag/ZnO nanohybrid using sodium alginate gelation method. Ceram Int 43(16):13786–13790CrossRefGoogle Scholar
  43. Palanikumar SN, Balachandran RC (2014) Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol 8:111–117CrossRefGoogle Scholar
  44. Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci 1:431–453Google Scholar
  45. Pandey S (2017) A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 241:1091–1113CrossRefGoogle Scholar
  46. Pandey S, Nanda KK (2016) Au Nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sensors 1(1):55–62CrossRefGoogle Scholar
  47. Pandey S, Romantja J (2016), Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int J Biol Macromol 93(A):712–723Google Scholar
  48. Pandey S, Tiwari S (2015) Facile approach to synthesize chitosan based composite—Characterization and cadmium (II) ion adsorption studies. Carbohydr Polym 134:646–656CrossRefGoogle Scholar
  49. Pramanik N, Mitra T, Khamrai M, Bhattacharyya A, Mukhopadhyay P, Gnanamani A, Basu RK, Kundu PP (2015) Characterization and evolution of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv 5(78):63489–63501CrossRefGoogle Scholar
  50. Prasanna VL, Vijayaraghvan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in dark. Langmuir 31(33):9155–9162CrossRefGoogle Scholar
  51. Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and its application in biological and chemical sensing. Chem Rev 110(9):5332–5365CrossRefGoogle Scholar
  52. Reddy BS, Reddy SV, Reddy NK, Kumari JP (2013) Synthesis, structural, optical properties and antibacterial activity of co-doped (Ag, Co) ZnO nanoparticles. Res J Mater Sci 1:11–20Google Scholar
  53. Sanders WE, Sanders CC (1997) Enterobacter spp.: a pathogen poised to flourish at the turn of the century. Clin Microbiol Rev 10:220–242Google Scholar
  54. Saranya M, Ramachandran R, Wang F (2016) Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci 1(4):454–460Google Scholar
  55. Schmidt-Mende L, Macmanus-Driscoll JL (2007) ZnO-nanostructures, defects, and devices. Mater Today 10(5):40–48CrossRefGoogle Scholar
  56. Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519(3):1224–1229CrossRefGoogle Scholar
  57. Sharma D, Sharma S, Kaith BS, Rajput J, Kaur M (2011) Synthesis of ZnO nanoparticles using surfactant free in air and microwave method. Appl Surf Sci 257(22):9661–9672CrossRefGoogle Scholar
  58. Shruthi SB, Bhat C, Bhaskar SP, Preethi G, Sailaja RRN (2016) Microwave assisted synthesis of guar gum grafted acrylic acid/nanoclay superabsorbent composites and its use in crystal violet dye absorption. Green Sustain Chem 6:11–25CrossRefGoogle Scholar
  59. Siddique S, Shah ZH, Shahid S, Yasmin F (2013) Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov 60(3):660–665Google Scholar
  60. Singh V, Singh D (2014) Glucose oxidase immobilization on guar gum − gelatin dual-templated silica hybrid xerogel. Ind Eng Chem Res 53(10):3854–3860CrossRefGoogle Scholar
  61. Singh V, Sharma AK, Maurya S (2009) Efficient Cadmium(II) removal from aqueous solution using microwave synthesized guar gum-graft-poly(ethylacrylate). Ind Eng Chem Res 48(10):4688–4696CrossRefGoogle Scholar
  62. Singh J, Kumar P, Hui KS, Hui KN, Ramam K, Tiwari RS, Srivastava ON (2012) Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. Cryst Eng Comm 14(18):5898–5904CrossRefGoogle Scholar
  63. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242CrossRefGoogle Scholar
  64. Song Z, Kelf TA, Sanchez WH, Roberts MS, Frenz JRM, Zvyagin AV (2011) Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed Opt Express 2(12):3321–3333CrossRefGoogle Scholar
  65. Stankovic A, Dimitrijevic S, Uskokovic D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf B 102:21–28CrossRefGoogle Scholar
  66. Stránská E, Mandys V, Waitzová D (1981) On toxicity question of synthetic polymers and their extracts in vitro and in vivo. Polim Med 11(1):27–37Google Scholar
  67. Su CH, Velusamy P, Kumar GV, Adhikary S, Pandian K, Anbu P (2017) Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition. J Mol Struct 1128:718–723CrossRefGoogle Scholar
  68. Sulochana M, Vani CS, Keerthi D, Subba Naidu NV, Sreedhar B (2013) Synthesis and characterization of gum Acacia-stabilized zinc oxide nanoparticles: a green approach and microbial activity. Am J Mater Sci 3(5):169–177Google Scholar
  69. Taber TE, Hegeman TF, York SM, Kinney RA, Webb DH (1991) Treatment of Pseudomonas infections in peritoneal dialysis patients. Perit Dial Int 11(3):213–216Google Scholar
  70. Tong GX, Du FF, Liang Y, Hu Q, Wu RN, Guar JG, Hu X (2013) Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-code-terminating antibacterial activity. J Mater Chem B 1(4):454–463CrossRefGoogle Scholar
  71. Vandebriel RJ, DeJong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71CrossRefGoogle Scholar
  72. Zhang Y, Wang J, Zhang L (2010) Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 26(22):17617–17623CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vandana Singh
    • 1
  • Lalit Mohan Dwivedi
    • 1
    • 2
  • Kirti Baranwal
    • 1
    • 2
  • Sugandha Asthana
    • 1
    • 2
  • Shanthy Sundaram
    • 2
  1. 1.Department of ChemistryUniversity of AllahabadAllahabadIndia
  2. 2.Department of BiotechnologyUniversity of AllahabadAllahabadIndia

Personalised recommendations