Advertisement

Seeds mediated synthesis of giant gold particles on the glass surface

  • A. A. Vasko
  • T. I. Borodinova
  • O. A. Marchenko
  • S. V. Snegir
Original Article
  • 10 Downloads

Abstract

Herein, we present the protocols of synthesis of two types of gold particles which are in the great interest for the purpose of molecular electronics. The first type is the flat prisms with a triangular/hexagonal shape and a lateral size up to ~ 80 µm. They were synthesized directly on a glass surface pretreated with (3-aminopropyl)-triethoxysilane molecules. The second type of particles was synthesized with using gold seeds with diameter of 18 nm. These seeds were deposited on a glass surface coated with APTES. The resulted three-dimensional structures with a form close to spherical increase in size up to 0.5–0.08 µm. Moreover, these particles grew up separately and did not merge during 48 h of synthesis.

Keywords

Gold seeds Giant particles Prisms Citrate APTES 

Notes

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

The authors declare no competing financial interest.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872CrossRefGoogle Scholar
  2. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105CrossRefGoogle Scholar
  3. Becker R, Liedberg B, Käll P-O (2010) CTAB promoted synthesis of Au nanorods—temperature effects and stability considerations. J Colloid Interface Sci 343(1):25–30CrossRefGoogle Scholar
  4. Borodinova TI, Sapsay VI, Romanyuk VR (2015) Gold nanocrystals growth in the mixture of primary alcohols. J Nano Electron Phys 7(1):01032-1–01032-10Google Scholar
  5. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416CrossRefGoogle Scholar
  6. Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85(21):3317–3328CrossRefGoogle Scholar
  7. Grzelczak M et al (2008) Form control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791CrossRefGoogle Scholar
  8. Gschneidtner TA et al (2014) A versatile self-assembly strategy for the synthesis of form-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30(11):3041–3050CrossRefGoogle Scholar
  9. Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philos Trans R Soc A Math Phys Eng Sci 368(1915):1405–1453CrossRefGoogle Scholar
  10. Ivanov MR, Bednar HR, Haes AJ (2009) Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis. ACS Nano 3(2):386–394CrossRefGoogle Scholar
  11. Jain T et al (2012) Aligned growth of gold nanorods in PMMA channels: parallel preparation of nanogaps. ACS Nano 6(5):3861–3867CrossRefGoogle Scholar
  12. Jain T et al (2014) Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. J Mater Chem C 2(6):994–1003CrossRefGoogle Scholar
  13. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905.  https://doi.org/10.1039/C5DT02964C CrossRefGoogle Scholar
  14. Koeppl S et al (2011) Towards a reproducible synthesis of high aspect ratio gold nanorods. J Nanomater 2011:515049.  https://doi.org/10.1155/2011/515049 CrossRefGoogle Scholar
  15. Kyaw HH, Al-Harthi SH, Sellai A, Dutta J (2015) Self-organization of gold nanoparticles on silanated surfaces. Beilstein J Nanotechnol 6:2345–2353CrossRefGoogle Scholar
  16. Laguta I, Fesenko T, Stavinskaya O, Dzjuba O, Shpak L (2016) Antioxidant and antimicrobial properties of Stevia leaves extracts and silver nanoparticles colloids. Chem J Mold 11(2):46–51CrossRefGoogle Scholar
  17. Langille MR et al (2012) Defining rules for the form evolution of gold nanoparticles. J Am Chem Soc 134(35):14542–14554CrossRefGoogle Scholar
  18. Liao J et al (2015) Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. Chem Soc Rev 44(4):999–1014CrossRefGoogle Scholar
  19. Linnik OP, Zhukovskiy MA, Starukh GN, Smirnova NP, Gaponenko NV, Asharif AM, Khoroshko LS, Borisenko VE (2015) Photocatalytic destruction of tetracycline hydrochloride on the surface of titanium dioxide films modified by gold nanoparticles. J Appl Spectrosc 81(6):990–995CrossRefGoogle Scholar
  20. Liu X et al (2017) Effect of growth temperature on tailoring the size and aspect ratio of gold nanorods. Langmuir 33(30):7479–7485CrossRefGoogle Scholar
  21. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15(7):1197–1208CrossRefGoogle Scholar
  22. Louis C, Pluchery O (2012) Gold nanoparticles for physics, chemistry and biology. Imperial College Press, LondonCrossRefGoogle Scholar
  23. Maksimenko LS, Rudenko SP, Stetsenko MO, Matyash IE, Mischuk OM, Kolomzarov YuV, Serdega BK (2016) Diagnostic of resonant properties of Au-PTFE nanostructures for sensor applications. In: Bonca J, Kruchinin S (eds) Nanomaterials for security. NATO science for peace and security series A: chemistry and biology. Springer, Berlin, pp 267–281CrossRefGoogle Scholar
  24. McCold CE et al (2015) Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays. Nanoscale 7(36):14937–14945CrossRefGoogle Scholar
  25. Meena SK, Sulpizi M (2013) Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Langmuir 29(48):14954–14961CrossRefGoogle Scholar
  26. Meena SK, Sulpizi M (2016) From gold nanoseeds to nanorods: the microscopic origin of the anisotropic growth. Angew Chem Int Ed 55(39):11960–11964CrossRefGoogle Scholar
  27. Meena SK et al (2016) The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys Chem Chem Phys 18(19):13246–13254CrossRefGoogle Scholar
  28. Mitsudome T, Kaneda K (2013) Gold nanoparticle catalysts for selective hydrogenations. Green Chem 15(10):2636–2654CrossRefGoogle Scholar
  29. Nam J et al (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645CrossRefGoogle Scholar
  30. Radha B, Kulkarni GU (2012) Giant single crystalline Au microplates. Curr Sci 102(1):70–77Google Scholar
  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  32. Shi L et al (2017) How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question. J Colloid Interface Sci 492:191–198CrossRefGoogle Scholar
  33. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52CrossRefGoogle Scholar
  34. Snegir SV et al (2017) Optical properties of gold nanoparticles decorated with furan-based diarylethene photochromic molecules. J Photochem Photobiol A Chem 342:78–84CrossRefGoogle Scholar
  35. Stavinskaya O, Laguta I, Orel I (2014) Silica-gelatin composite materials for prolonged desorption of bioactive compounds. Mater Sci (Medziagotyra) 20(2):171–176Google Scholar
  36. Stetsenko MO et al (2017) Optical properties of gold nanoparticle assemblies on a glass surface. Nanoscale Res Lett.  https://doi.org/10.1186/s11671-017-2107-8
  37. Tie M, Dhirani AA (2015) Conductance of molecularly linked gold nanoparticle films across an insulator-to-metal transition: from hopping to strong Coulomb electron–electron interactions and correlations. Phys Rev B 91(15):155131.  https://doi.org/10.1103/PhysRevB.91.155131 CrossRefGoogle Scholar
  38. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  39. Xiao L, Yeung ES (2014) Optical imaging of individual plasmonic nanoparticles in biological samples. Annu Rev Anal Chem 7:89–111.  https://doi.org/10.1146/annurev-anchem-071213-020125 CrossRefGoogle Scholar
  40. Xu Y et al (2017) Cooperative interactions among CTA+, Br and Ag+ during seeded growth of gold nanorods. Nano Res 10(6):2146–2155CrossRefGoogle Scholar
  41. Yan Y et al (2015) Internal-modified dithiol DNA-directed Au nanoassemblies: geometrically controlled self-assembly and quantitative surface-enhanced Raman scattering properties. Sci Rep 5:16715.  https://doi.org/10.1038/srep16715 CrossRefGoogle Scholar
  42. Zhai Y et al (2016) Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat Mater 15(8):889–895CrossRefGoogle Scholar
  43. Zhang W et al (2008) Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. J Am Chem Soc 130(46):15581–15588CrossRefGoogle Scholar
  44. Zhang Z et al (2014) Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold. Langmuir 30(10):2648–2659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.F. D. Ovcharenko Institute of Biocolloidal ChemistryNational Academy of ScienceKievUkraine
  2. 2.Institute of PhysicsNational Academy of ScienceKievUkraine
  3. 3.Chuiko Institute of Surface ChemistryNational Academy of SciencesKievUkraine

Personalised recommendations