Skip to main content
Log in

Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In the present study, the interaction of optical radiation with a system of periodically arranged gold and silver nanowires of the square cross-sections on the dielectric substrate has been analyzed. The spectral character of the absorption, reflection and transmission at the interaction of the optical wave with nanogratings based on gold and silver is qualitatively and quantitatively different. It is explained by the fact that the imaginary part of the dielectric constant of gold is much larger than the imaginary part of the dielectric constant of silver in the spectral region of the plasmon resonance. Moreover, the electric fields which appear on the nanowires are considerably higher for silver than for gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babar S, Weaver JH (2015) Optical constants of Cu, Ag, and Au revisited. Appl Opt 54:477–481

    Article  Google Scholar 

  • Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley

  • Catchpole KA, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  Google Scholar 

  • Chekroun MZ, Bassou G, Salomon L, Zenati A, Taalbi A, Bendaoud H, Ameri M (2012) Optical near-field study of Ag nanowires by the differential method. J Mod Phys 3:102–109

    Article  Google Scholar 

  • Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813

    Article  Google Scholar 

  • Dmitruk NL, Malynych SZ, Moroz IE, Kurlyak VY (2010) Optical efficiency of Ag and Au nanoparticles. Semicond Phys Quantum Electron Ptoelectron 13(4):369–373

    Google Scholar 

  • Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B, Wu D (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200

    Article  Google Scholar 

  • Fitio V, Yaremchuk I, Bendzyak A, Bobitski Y (2017) Modified RCWA method for studying the resonance diffraction phenomena on metal gratings. In: Conference proceedings of 37th international conference on electronics and nanotechnology (ELNANO), 2017, pp 170–174

  • Fitio V, Yaremchuk I, Bendzyak A, Bobitski Ya (2017) Application RCWA for studying plasmon resonance under diffraction by metal gratings. In: Conference proceedings of first ukraine conference on electrical and computer engineering (UKRCON), 2017, pp 667–670

  • Gong Z, Karandikar S, Zhang X, Kotipalli V, Lvov Y, Que L (2010) Composite nanomaterial thin film-based biosensors. In: Sensors, 2010 IEEE, pp 29–32

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  Google Scholar 

  • Jin L, Yue D, Xu ZW, Liang G, Zhang Y, Zhang JF, Wang Z (2014) Fabrication, mechanical properties, and biocompatibility of reduced graphene oxide-reinforced nanofiber mats. RSC Adv 4(66):35035–35041

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys. Rev. B 6:4370–4379

    Article  Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111(1):1–35

    Article  Google Scholar 

  • Kim K, Kim DJ, Moon S, Kim D, Byun KM (2009) Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings. Nanotechnology 20:315501–315506

    Article  Google Scholar 

  • Li L (1996a) Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 13(5):1024–1035

    Article  Google Scholar 

  • Li L (1996b) Use of Fourier series in the analisis of discontinuous periodic structures. J Opt Soc Am A 13(9):1870–1876

    Article  Google Scholar 

  • Mai W, Zuo Y, Li C, Wu J, Leng K, Zhang X, Wu D (2017) Functional nanonetwork-structured polymers with inbuilt poly (acrylic acid) linings for enhanced adsorption. Polym Chem 8(33):4771–4775

    Article  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  • Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):10

    Article  Google Scholar 

  • Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125:2696–2703

    Article  Google Scholar 

  • Malynych S, Chumanov G (2007) Extinction spectra of quasi-spherical silver sub-micron particles. J Quant Spectrosc Radiat Transf 106:297–303

    Article  Google Scholar 

  • Malynych S, Chumanov G (2008) Narrow plasmon mode in 2D arrays of silver nanoparticles self-assembled on thin silver film. J Microsc 229:567–574

    Article  Google Scholar 

  • McPeak KM, Jayanti SV, Kress SJP, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3):326–333

    Article  Google Scholar 

  • Meškinis Š, Peckus D, Vasiliauskas A, Čiegis A, Gudaitis R, Tamulevičius T, Yaremchuk I, Tamulevičius S (2017) Photovoltaic properties and ultrafast plasmon relaxation dynamics of diamond-like carbon nanocomposite films with embedded Ag nanoparticles. Nanoscale Res Lett 12(1):288

    Article  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759

    Article  Google Scholar 

  • Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief grating. J Opt Soc Am A 3(5):1780–1787

    Article  Google Scholar 

  • Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binare grating. J Opt Soc Am A 12(5):1068–1076

    Article  Google Scholar 

  • Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105

    Article  Google Scholar 

  • Schnabel B, Kley E-B, Wyrowski F (1999) Study on polarizing visible light by subwavelength-period metal-stripe gratings. Opt Eng 38(2):220–226

    Article  Google Scholar 

  • Shapoval OV, Nosich AI (2013) Finite gratings of many thin silver nanostrips: optical resonances and role of periodicity. AIP Adv 3(4):042120

    Article  Google Scholar 

  • Tian Y, Zhang X, Geng HZ, Yang HJ, Li C, Da SX, Jia SL (2017) Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC Adv 7(83):53018–53024

    Article  Google Scholar 

  • Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15(7):15684–15716

    Article  Google Scholar 

  • Weismann M, Gallagher DF, Panoiu NC (2015) Accurate near-field calculation in the rigorous coupled-wave analysis method. J Opt 17(12):125612

    Article  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  Google Scholar 

  • Yaremchuk I, Fitio V, Bobitski Y (2002) Silver nanoparticles under plasmon resonance conditions. In: Microelectronics (MIEL), 2012 28th International conference 2012, pp 297–300

  • Yaremchuk I, Tamulevičius T, Fitio V, Gražulevičiūte I, Bobitski Ya, Tamulevičius S (2013) Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings. J Mod Opt 60(20):1781–1788

    Article  Google Scholar 

  • Yaremchuk I, Tamulevičienė A, Tamulevičius T, Šlapikas K, Balevičius Z, Tamulevičius S (2014) Modeling of the plasmonic properties of DLC–Ag nanocomposite films. Phys Status Solidi 211(2):329–335

    Article  Google Scholar 

  • Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  Google Scholar 

  • Zhang Z, Nie Y, Zhang Q, Liu X, Tu W, Zhang X, Zhang S (2017) Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids. ACS Sustain Chem Eng 5(3):2614–2622

    Article  Google Scholar 

  • Zinenko TL, Marciniak M, Nosich AI (2013) Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization. IEEE J Sel Topics Quant Electron 19(3):9000108

    Article  Google Scholar 

Download references

Acknowledgements

This research funded by the Ministry of Education and Science of Ukraine should be acknowledged (project “Energy transformation resonance processes of the electron excitation by plasmon nanostructures in the photonics issues and devices”; project “Modeling and experimental verification of plasmon resonance nanostructures for the conversion and control of electromagnetic radiation of a wide spectral range”). Authors are thankful to prof. S. Malynych for the usable discussion regarding the resonant phenomena in the metal nanoparticles.

Author information

Authors and Affiliations

Authors

Contributions

VF and IY performed theoretical calculations of spectral characteristics and drafted, wrote, and arranged the article. OV performed theoretical calculations of dielectric permittivity of gold and silver. YB planned numerical experiments and has been involved in writing and drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. Yaremchuk.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitio, V., Yaremchuk, I., Vernyhor, O. et al. Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate. Appl Nanosci 8, 1015–1024 (2018). https://doi.org/10.1007/s13204-018-0686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0686-z

Keywords

Navigation