Skip to main content
Log in

Symbiont-coral relationship in the main reef building scleractinians of the Central Mexican Pacific

  • Short Communications
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Hermatypic corals maintain obligate symbiosis with symbiodiniacean dinoflagellates, forming either general or specific relationships with these microalgae. The differences in these associations can be attributed to local environmental conditions: different symbiont species are adapted to different ranges of environmental conditions, which directly influences the vitality of the mutualism in different environments. We identified the Symbiodiniaceae present in deep and shallow corals from the two most abundant reef-building coral genera in the Northeastern Tropical Pacific using two molecular markers, the complete ITS region and the chloroplast 23 S region. The molecular identification showed that Pocillopora corals harbor a symbiont belonging to the genus Durusdinium, while Pavona corals harbor Cladocopium sp. symbionts. No differences between deep and shallow coral colonies were observed, suggesting a stable association between coral and symbiont across the environmental gradient sampled. These unique associations appear to be thriving a region considered marginal for coral development and it appears that both kinds of symbionts endure a wide range of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baker AC (2011) Zooxanthellae, definition. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, forms, and processes. Springer, Verlag, pp 1189–1192

    Chapter  Google Scholar 

  • Baker AC, Correa AMS, Cunning R (2017) Diversity, distribution and stability of Symbiodinium in reef corals of the Eastern Tropical Pacific. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reef ecosystems of the Eastern Tropical Pacific, coral reefs of the world. Springer, pp 405–420

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayersm EW (2013) GenBank Nucleic Acid Res 41:D36–42

    Article  CAS  Google Scholar 

  • Buddemeier RW, Baker AC, Fautin DG, Jacobs JR (2004) The adaptive hypothesis of bleaching. In: Rosenberg E, Loya E (eds) Coral health and disease. Springer, Berlin, Heidelberg, pp 427–444

    Chapter  Google Scholar 

  • Carriquiry JD, Reyes-Bonilla H (1997) Community structure and geographic distribution of the coral reefs of Nayarit, Mexican Pacific. Cienc Mar 23(2):227–248. https://doi.org/10.7773/cm.v23i2.793

    Article  Google Scholar 

  • Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2007) Programa de conservación y manejo Parque Nacional Islas Marietas. CONANP, México

    Google Scholar 

  • Carriquiry JD, Cupul-Magaña AL, Rodríguez-Zaragoza F, Medina-Rosas P (2001) Coral bleaching and mortality in the Mexican Pacific during the 1997-98 El Niño and prediction from a remote sensing approach. Bull Mar Sci 69(1):237–249

    Google Scholar 

  • Cruz-García R, Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA, Mayfield A, Cupul-Magaña AL (2020) Ephemeral effects of El Niño southern oscillation events on an eastern tropical Pacific coral community. Mar Freshw Res 71:1259–1268. https://doi.org/10.1071/MF18481

    Article  Google Scholar 

  • Cupul-Magaña AL, Aranda-Mena OS, Medina-Rosas P, Vizcaíno-Ochoa V (2000) Comunidades coralinas de las Islas Marietas, Bahía de Banderas, Jalisco-Nayarit, México. Mexicoa 2(1):15–22

    Google Scholar 

  • Cupul-Magaña AL, Rodríguez-Troncoso AP (2017) Tourist carrying capacity at Islas Marietas National Park: an essential tool to protect the coral community. Appl Geogr 88:15–23. https://doi.org/10.1016/j.apgeog.2017.08.021

    Article  Google Scholar 

  • Davies SW, Moreland KN, Wham DC, Kanke MR, Matz MV (2019) Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol Ecol 29(23):4559–4572. https://doi.org/10.1111/mec.15668

    Article  CAS  Google Scholar 

  • Done T (2011) Corals: environmental controls on growth. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, forms, and processes. Springer, Verlag, pp 281–293

    Chapter  Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-southern oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:70–109

    Google Scholar 

  • Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galapagos Islands: The northernmost islands (Darwin and Wenman). Coral Reefs 34:421–436. https://doi.org/10.1007/s00338-015-1280-4

    Article  Google Scholar 

  • Glynn PW (2017) History of Eastern Pacific coral reef research. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the Eatern Tropical Pacific: persistence and loss in a dynamic environment. Springer, pp 1–37

  • Goulet TL, Lucas MQ, Schizas NV (2019) Symbiodiniaceae genetic diversity and symbioses with hosts from shallow to mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, Switzerland, pp 537–551. https://doi.org/10.1007/978-3-319-92735-0_30

    Chapter  Google Scholar 

  • Guzmán HM, Cortés J (2007) Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar Biol 151:401–411. https://doi.org/10.1007/s00227-006-0495-x

    Article  Google Scholar 

  • Hernández-Zulueta J, Rodríguez-Zaragoza FA, Araya R, Vargas-Ponce O, Rodríguez-Troncoso AP, Cupul-Magaña AL, Díaz-Pérez L, Ríos-Jara E, Ortiz M (2017) Multi-scale analysis of hermatypic coral assemblages at Mexican Central Pacific. Sci Mar 81(1):91–102. https://doi.org/10.3989/scimar.04371.12A

    Article  Google Scholar 

  • Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, Kemp DW, LaJeunesse TC, Warner ME (2019) Host-symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep 9:99. https://doi.org/10.1038/s41598-019-46412-4

    Article  CAS  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SR, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin M, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83. https://doi.org/10.1126/science.aan8048

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc R Soc London B 271:1757–1763. https://doi.org/10.1098/rspb.2004.2757

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, de Vantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161. https://doi.org/10.3354/meps284147

    Article  Google Scholar 

  • LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez, Eastern Pacific. Coral Reefs 26:265–270. https://doi.org/10.1007/s00338-006-0189-3

    Article  Google Scholar 

  • LaJeunesse TC, Reyes-Bonilla H, Warner ME, Willis M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 52(2):719–727. https://doi.org/10.4319/lo.2008.53.2.0719

    Article  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, López-Pérez A, Reyes-Bonilla H, Warner ME (2010a) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B 277:2925–2934. https://doi.org/10.1098/rspb.2010.0385

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010b) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800. https://doi.org/10.1111/j.1365-2699.2010.02273.x

    Article  Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319. https://doi.org/10.2216/13-186.1

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580. https://doi.org/10.1016/j.cub.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Wiedenmann J, Casado Amezúa P, D’Ambra I, Turnham KE, Nitschke MR, Oakley CA, Goffredo S, Spano CA, Cubillos VM, Davy SK, Suggett DJ (2021) Revival of Philozoon geddes for host-specialized dinoflagellates, “zooxanthellae” in animals from coastal temperate zones of northern and southern hemispheres. Eur J Phycol. 2021:1–15. https://doi.org/10.1080/09670262.2021.1914863

  • Lee ST, Jeong HJ, LaJeunesse TC (2020) Cladocopium infistulum sp. nov. (Dinophyceae), a thermally tolerant dinoflagellate symbiotic with giant clams from the western Pacific Ocean. Phycologia 59(6):515–526. https://doi.org/10.1080/00318884.2020.1807741

    Article  Google Scholar 

  • Lough JM, van Oppen MJH (2018) Introduction: coral bleaching-patterns, processes, causes and consequences. In: van Oppen MJH, Lough JM (eds) Coral Bleaching, Patterns, processes, causes and consequences. Springer, Cham, Switzerland, pp 1–8

    Google Scholar 

  • Martínez-Castillo V, Rodríguez-Troncoso AP, Santiago-Valentín JD, Cupul-Magaña AL (2020) The influence of urban pressures on coral physiology on marginal coral reefs of the Mexican Pacific. Coral Reefs 39:625–637. https://doi.org/10.1007/s00338-020-01957-z

    Article  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012a) Transcriptional response of two core photosystem genes in Symbiodinium spp. exposed to thermal stress. PLoS ONE 7:e50439. https://doi.org/10.1371/journal.pone.0050439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012b) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Pro 462:1–7. https://doi.org/10.3354/meps09914

    Article  Google Scholar 

  • Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK (2019) Nutrient availability and metabolism affect the stability of Coral-Symbiodiniaceae symbioses. Trends Microbiol 27(8):678–689. https://doi.org/10.1016/j.tim.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  • Nitschke MR, Craveiro SC, Brandão C, Fidalgo C, Serôdio J, Calado AJ, Frommlet JC (2020) Description of Freudenthalidium Gen. Nov. And Halluxium Gen. Nov. To formally recognize clades FR3 and H as genera in the family Symbiodiniaceae (Dynophyceae). J Phycol 56(4):923–940. https://doi.org/10.1111/jpy.12999

    Article  CAS  PubMed  Google Scholar 

  • Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC (2011) Genotipic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 20:5197–5212. https://doi.org/10.1111/j.1365-294X.2011.05357.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettay DT, LaJeunesse TC (2013) Long.tange dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PlosONE 8(11):e79208. https://doi.org/10.1371/journal.pone.0079208

    Article  CAS  Google Scholar 

  • Plata L, Filonov A, Tereshchenko I, Nelly L, Monzón C, Avalos D, Vargas C (2006) Geostrophic currents in the presence of an internal waves field in Bahia de Banderas, Mexico. E-Gnosis 4:18

    Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078. https://doi.org/10.1007/s002270100674

    Article  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evo 38:20–30. https://doi.org/10.1016/j.ympev.2005.04.028

    Article  CAS  Google Scholar 

  • Pochon X, LaJeunesse TC (2021) Miliolidium n. gen, a new symbiodiniacean genus whose members associate with soritid foraminifera or are free-living. J Eukaryot Microbiol 68(4):e12856. https://doi.org/10.1111/jeu.12856

    Article  Google Scholar 

  • Portela W, Beier E, Barton ED, Castro R, Godínez V, Palacios-Hernández E, Fiedler PC, Sánchez-Velazco L, Trasviña A (2016) Water masses and circulation in the Tropical Pacific off Central Mexico and surrounding areas. J Phys Oceano 46:3069–3081. https://doi.org/10.1175/JPO-D-16-0068.1

    Article  Google Scholar 

  • Reyes-Bonilla H, Carriquiry JD, Leyte-Morales GE, Cupul-Magaña AL (2002) Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997–1999) on coral reefs of the western coast of México. Coral Reefs 21:368–372. https://doi.org/10.1007/s00338-002-0255-4

    Article  Google Scholar 

  • Rodríguez-Troncoso AP, Carpizo-Ituarte E, Pettay DT, Warner ME, Cupul-Magaña AL (2014) The effects of an abnormal decrease in temperature on the Eastern Pacific reef-building coral Pocillopora verrucosa. Mar Biol 161:131–139. https://doi.org/10.1007/s00227-013-2322-5

    Article  CAS  Google Scholar 

  • Rodríguez-Troncoso AP, Carpizo-Ituarte E, Cupul-Magaña AL (2016) Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Mar Ecol 37(5):1168–1175. https://doi.org/10.1111/maec.12392

    Article  Google Scholar 

  • Romero-Torres M, Acosta A, Palacio-Castro AM, Treml EA, Capata FA, Paz-García DA, Porter JW (2020) Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Glob Chang Biol 26(7):3880–3890. https://doi.org/10.1111/gcb.15126

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733. https://doi.org/10.1111/j.1365-294X.2007.03403.x

    Article  CAS  PubMed  Google Scholar 

  • Sheppard CR, Davy SK, Pilling GM (2009) The Biology of Coral Reefs. Oxford University Press

  • Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Carricart-Ganivet JP (2017) Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 5:e3191. https://doi.org/10.7717/peerj.3191

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnham KE, Wham DC, Sampayo E, LaJeunesse TC (2021) Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J 15:3271–3285. https://doi.org/10.1038/s41396-021-01007-8

    Article  PubMed  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2007) Photosynthetic symbioses in animals. J Exp Bot 59(5):1069–1080. https://doi.org/10.1093/jxb/erm328

    Article  CAS  Google Scholar 

  • Wall CB, Kaluhiokalani M, Popp BN, Donahue MJ, Gates RD (2020) Divergent symbiont communities determine the physiology and nutrition of coral reefs across a light-availability gradient. ISME J 14:945–958. https://doi.org/10.1038/s41396-019-0570-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wham DC, Ning G, LaJeunesse T (2017) Symbiodinium glynni sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific ocean. Phycologia 56(4):396–409. https://doi.org/10.2216/16-86.1

    Article  CAS  Google Scholar 

  • Walther-Mendoza M, Reyes-Bonilla H, LaJeunesse TC, López-Pérez A (2016) Distribución y diversidad de dinoflagelados simbióticos en corales pétreos de la costa de Oaxaca, Pacífico de México. Rev Mex Biodivers 87:417–426. https://doi.org/10.1016/j.rmb.2016.03.007

    Article  Google Scholar 

Download references

Acknowledgements

The present study was funded by the National Geographic Society, grants NGS-55349R-19 to APRT and EC-51,496 C-18 to VMC, and by the project PROCER/CCER/DROPC/09/2016 to ALCM. While conducting the study and writing the manuscript, VMC received a Ph.D. scholarship from the Centro Nacional de Ciencia y Tecnología (CONACyT; I.D. 332,939). The authors kindly thank Biol. Mariana Gudiño for her assistance in field and laboratory work and Ximena Zamacona and Rafael Rovirosa for their assistance in the edition process. Finally, we kindly thank Todd LaJeunesse for all the comments and suggestions that greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the research. VMC, APRT, and ALCM performed field.

Corresponding author

Correspondence to Alma Paola Rodríguez-Troncoso .

Ethics declarations

Disclosure of potential conflicts of interest:

The authors have no relevant financial or non-fionancial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Castillo, V., Rodríguez-Troncoso , A.P., Bautista-Guerrero, E. et al. Symbiont-coral relationship in the main reef building scleractinians of the Central Mexican Pacific. Symbiosis 86, 315–323 (2022). https://doi.org/10.1007/s13199-022-00848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-022-00848-x

Keywords

Navigation