Skip to main content
Log in

The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This study focused on the genetic, symbiotic and phenotypic diversity of a collection of 12 Vachellia seyal and Prosopis juliflora rhizobial strains that were isolated from soils influenced by the roots of the grass Sporobolus robustus. Phylogenetic trees were constructed based on data from the 16S rRNA gene, from a multi-locus sequence analysis (MLSA) of the housekeeping genes recA, atpD, glnA and gyrB, as well as from the symbiotic genes nodA, nodC and nifH. Most of the mesorhizobial strains were clustered with the M. plurifarium type strain ORS 1032T and the 16S rRNA gene was as discriminatory as the other housekeeping genes. The Ensifer collection was closely related to E. alkalisoli YIC 4027T and E. fredii LMG 6217T using 16S rRNA and MLSA. Amplification of the Rhizobium collection was only observed with the 16S rRNA gene, where the strains were clustered with Rhizobium sp. 1B, Rhizobium sp. SEMIA 6411, Rhizobium sp. AS1-101a and Rhizobium sp. ORS 3441. The phylogeny of the nifH gene from Mesorhizobium and Ensifer strains were similar to those of nodulation genes (nodA and nodC). The nodA-nodC and nifH gene phylogenies were not consistent with those of 16S rRNA and the housekeeping genes. Ensifer genospecies tolerated high salinity better than the other genotypes after testing on a salt content gradient up to 49‰. We conclude that the rhizosphere of Sporobolus tussocks harbors a rhizobial microbiota, which could be capable of helping V. seyal and P. juliflora to grow better in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J MolBiol 215(3):403–410

    Article  CAS  Google Scholar 

  • Andrews M, De Meyer S, James EK, Stepkowski T, Hodge S, Simon MF et al (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 9:321

    Article  PubMed Central  CAS  Google Scholar 

  • Bakhoum N, Galiana A, Le Roux C, Kane A, Duponnois R, Ndoye F, Fall D, Noba K, Sylla SN, Diouf D (2014) Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. And A. seyal (Del.) Mesorhizobium strains from different regions of Senegal. Microb Ecol 69:641–651

    Article  PubMed  Google Scholar 

  • Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benidire L, Lahrouni M, Daoui K, el Abidine FZ, Carmona RG, Göttfert M, Oufdou K (2018) Phenotypic and genetic diversity of Moroccan rhizobia isolated from Vicia faba and study of genes that are likely to be involved in their osmotolerance. Syst Appl Microbiol 41(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Beukes CW, Boshoff FS, Phalane FL, Hassen AI, le Roux MM, Stepkowski T et al (2019) Both alpha-and beta-rhizobia occupy the root nodules of Vachellia karroo in South Africa. Front Microbiol 10:1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhnik O, ElFaik S, Alami S, Talbi C, Lamin H, Abdelmoumen H, Tortosa Muñoz G, J. Bedmar E, Missbah el Idrissi M (2019) Ensifer fredii symbiovar vachelliae nodulates endemic Vachellia gummifera in semiarid Moroccan areas. Syst Appl Microbiol 42(5):125999

    Article  PubMed  Google Scholar 

  • Choudhary S, Tak N, Bissa G, Chouhan B, Choudhary P, Sprent JI, James EK, Gehlot HS (2020) The widely distributed legume tree Vachellia (Acacia) nilotica subsp. indica is nodulated by genetically diverse Ensifer strains in India. Symbiosis 80(1):15–31

    Article  CAS  Google Scholar 

  • Cordero I, Ruiz-Díez B, de la Peña TC, Balaguer L, Lucas MM, Rincón A, Pueyo JJ (2016) Rhizobial diversity, symbiotic effectiveness and structure of nodules of Vachellia macracantha. Soil Biol Biochem 96:39–54

    Article  CAS  Google Scholar 

  • Dang X, Xie Z, Liu W, Sun Y, Liu X, Zhu Y, Staehelin C (2019) The genome of Ensifer alkalisoli YIC4027 provides insights for host specificity and environmental adaptations. BMC Genomics 20(1):643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Lajudie P, Fulele-Laurent E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. Nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  PubMed  Google Scholar 

  • Diedhiou S, Dossa EL, Badiane AN, Diedhiou I, Sène M, Dick RP (2009) Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal. Pedobiologia 52:273–286

    Article  CAS  Google Scholar 

  • Diouf D, Fall D, Chaintreuil C, Ba AT, Dreyfus B, Neyra M, Ndoye I, Moulin L (2010) Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated with the promiscuous species Acacia seyal Del. J Appl Microbiol 108(3):818–830

    Article  CAS  PubMed  Google Scholar 

  • Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. Rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  CAS  PubMed  Google Scholar 

  • Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N, Fall D, Neyra M, Parrinello H, Diouf M, Ndoye I, Moulin L (2015) Genetic and genomic diversity studies of acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 10(2):e0117667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant-Microbe Interact 7:564–572

    Article  CAS  PubMed  Google Scholar 

  • Dommergues YR (1995) Nitrogen fixation by trees in relation to soil nitrogen economy. Fertilizer Research 42(1–3):215–230

    Article  CAS  Google Scholar 

  • Dossa EL, Diedhiou S, Compton J, Assigbetse K, Dick RP (2010) Spatial patterns of P fractions and chemical properties in soils of two native shrub communities in Senegal. Plant Soil 327:185–198

    Article  CAS  Google Scholar 

  • Eardly BD, Nour SM, van Berkum P, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuán J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River basin (Argentina). Appl Environ Microbiol 75(4):1088–1098

    Article  CAS  PubMed  Google Scholar 

  • Fall F, Le Roux C, Bâ AM, Fall D, Bakhoum N, Faye MN, Diouf D (2019) The rhizosphere of the halophytic grass Sporobolus robustus Kunth hosts rhizobium genospecies that are efficient on Prosopis juliflora (Sw.) DC and Vachellia seyal (Del.) PJH hurter seedlings. Syst Appl Microbiol 42:232–239

    Article  PubMed  Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312

    Article  PubMed  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:96–401

    Article  Google Scholar 

  • Laranjo M, Alexandre A, Rivas R, Velazquez E, Young JP, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li X, Liu Y, Wang ET, Ren C, Liu W, Xu H, Wu NJ, Li Y, Zhan X, Xie Z (2016) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline–alkaline soils. System Appl Microbiol 39(3):195–202

    Article  CAS  Google Scholar 

  • Lorite MJ, Donate-Correa J, del Arco-Aguilar M, Pérez Galdona R, Sanjuán J, León-Barrios M (2010) Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes. Syst Appl Microbiol 33:282–290

    Article  PubMed  Google Scholar 

  • Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214

    Article  CAS  PubMed  Google Scholar 

  • Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Bena G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Cournoyer B, Simonet P, Nazaret S (1992) Analysis of a ribosomal RNA operon in the actinomycete Frankia. Gene 111:119–124

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Jocteur-Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankhla IS, Tak N, Meghwal RR, Choudhary S, Alkesh T, Rathi S, Sprent JI, James EK, Gehlot HS (2017) Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410:21–40

    Article  CAS  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner SL, Young JPW (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule Bacteria IBP handbook no. 15, Blackwell, Edinburgh, U.K.

  • Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Lou K, Jin X, Mao PH, Wang ET, Tian CF, Sui XH, Chen WF, Chen WX (2012) Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil 353:123–134

    Article  CAS  Google Scholar 

  • Zhao CT, Wang ET, Chen WF, Chen WX (2008) Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. FEMS Microbiol Lett 286(2):263–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Joël Fardoux (LSTM, Montpellier) for his valuable technical assistance. This work was funded by the International Foundation for Science (IFS). The authors wish to thank Peter Biggins and the Editor-in-Chief of Symbiosis for reviewing the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatoumata Fall.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fall, F., Le Roux, C., Bâ, A.M. et al. The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth. Symbiosis 84, 61–69 (2021). https://doi.org/10.1007/s13199-021-00763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00763-7

Keywords

Navigation