Skip to main content

Selection of Rhizobium strains for inoculation of Lithuanian Pisum sativum breeding lines

Abstract

Pea (Pisum sativum) is one of the most popular legume crops used in agriculture. Because of the high demand and relatively reasonable price, Lithuania has increased the cultivation of this crop and invested in the research of new effective breeding lines in the last years. Rhizobial inoculants contribute to increasing yield in legumes through N2 fixation. Therefore, the objective of this work was to identify rhizobial strains able to increase the activity of two pea breeding lines (‘DS 3637–2’ and ‘DS 3795–3’) known for high productivity, resistance to biotic and abiotic stresses, and competitiveness in respect to weeds. Six rhizobial strains isolated from pea plants were identified as members of the Rhizobium leguminosarum group and phenotypically characterized in depth by Phenotype Microarray (PM). Phenotypic differences observed were linked to their phylogeny. Then, strains were tested for their ability to stimulate the growth of the breeding lines ‘DS 3637–2’ and ‘DS 3795–3’. Reference strain Rhizobium anhuiense Z1 and Rhizobium leguminosarum sv. viciae 14ZE showed the best symbiotic performances with breeding lines ‘DS 3637–2’ and ‘DS 3795–3’, respectively. Based on the obtained results, R. leguminosarum sv. viciae strain 14ZE appears to be a new effective inoculant of peas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelmoumen H, Filali-Maltouf A, Neyra M, Belabed A, Missbah El Idrissi M (1999) Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. J Appl Microbiol 86:889–898. https://doi.org/10.1046/j.1365-2672.1999.00727.x

    CAS  Article  Google Scholar 

  2. Abi-Ghanem R, Smith JL, Vandemark GJ (2013) Diversity of Rhizobium leguminosarum from pea fields in Washington state. ISRN Soil Sci 2013:786030–786037. https://doi.org/10.1155/2013/786030

    Article  Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18:705. https://doi.org/10.3390/ijms18040705

    CAS  Article  PubMed Central  Google Scholar 

  5. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 403:1607–1621. https://doi.org/10.1093/jxb/erh196

    CAS  Article  Google Scholar 

  6. Baset Mia MA, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242. https://doi.org/10.3923/ijb.2010.235.242

    Article  Google Scholar 

  7. Bellabarba A, Fagorzi C, diCenzo GC, Pini F, Viti C, Checcucci A (2019) Deciphering the symbiotic plant microbiome: translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9:529

    CAS  Article  Google Scholar 

  8. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  9. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  Google Scholar 

  10. Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Mengoni A, Bazzicalupo M, Viti C (2009) Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis. Appl environ Microbiol 75:5396–5404. Doi: AEM.00196-09 [pii]https://doi.org/10.1128/AEM.00196-09

  11. Bourion V, Heulin-Gotty K, Aubert V, Tisseyre P, Chabart-Martinello M, Pervent M, Delaitre C, Vile D, Siol M (2018) Co-inoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Front Plant Sci 8:2249. https://doi.org/10.3389/fpls.2017.02249

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bussotti F, Desotgiu R, Cascio C, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data Environ Exp Bot doi 73:19–30. https://doi.org/10.1016/j.envexpbot.2010.10.022

    CAS  Article  Google Scholar 

  13. Caccamo D, Di Cello F, Fani R, Gugliandolo C, Maugeri TL (1999) Polyphasic approach to the characterisation of marine luminous bacteria. Res Microbiol 150:221–230. https://doi.org/10.1016/S0923-2508(99)80039-4

    CAS  Article  PubMed  Google Scholar 

  14. Cardoso P, Freitas R, Figueira E (2015) Salt tolerance of rhizobial populations from contrasting environmental conditions: understanding the implications of climate change. Ecotoxicology 24:143–152. https://doi.org/10.1007/s10646-014-1366-8

    CAS  Article  PubMed  Google Scholar 

  15. Daimon H (1999) Nitrate-induced inhibition of root nodule formation and nitrogenase activity in the peanut (Arachis hypogaea L.). Plant Prod Sci 2:81–86. https://doi.org/10.1626/pps.2.81

    Article  Google Scholar 

  16. Day D (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29:185–201

    CAS  Google Scholar 

  17. Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol Lett 237:187–193. https://doi.org/10.1016/j.femsle.2004.07.013

    CAS  Article  PubMed  Google Scholar 

  18. Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF (2012) Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology 158:1369–1378. https://doi.org/10.1099/mic.0.057281-0

    CAS  Article  PubMed  Google Scholar 

  19. Drew EA, Denton MD, Sadras VO, Ballard RA (2012) Agronomic and environmental drivers of population size and symbiotic performance of Rhizobium leguminosarum bv. viciae in Mediterranean-type environments. Crop Pasture Sci 63:467–477. https://doi.org/10.1071/CP12032

    Article  Google Scholar 

  20. Dudeja SS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica 43:253–259. https://doi.org/10.1007/s11099-005-0041-y

    CAS  Article  Google Scholar 

  21. Duncan MJ (1981) Properties of Tn5-induced carbohydrate mutants in Rhizobium meliloti. J Gen Microbiol 122:61–67. https://doi.org/10.1099/00221287-122-1-61

    CAS  Article  Google Scholar 

  22. Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C, Mengoni A (2020) diCenzo GC (2020) symbiotic and non-symbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biol Evol. https://doi.org/10.1093/gbe/evaa221

  23. FAOSTAT (2021) Food and agriculture Organization of the United Nations (FAO). FAOSTAT statistical database. In: http://www.fao.org/faostat/en/#data/QC. https://search.library.wisc.edu/catalog/999890171702121. Accessed 08/02/2021

  24. Fauvart M, Verstraeten N, Dombrecht B, Venmans R, Beullens S, Heusdens C, Michiels J (2009) Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 155:3045–3054. https://doi.org/10.1099/mic.0.027599-0

    CAS  Article  PubMed  Google Scholar 

  25. Ferguson BJ, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426. https://doi.org/10.4161/psb.23426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300. https://doi.org/10.1128/MMBR.68.2.280-300.200468/2/280

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048. https://doi.org/10.1099/00207713-51-6-2037

    CAS  Article  PubMed  Google Scholar 

  28. Gaworzewska ET, Carlile MJ (1982) Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. Microbiology 128:1179–1188. https://doi.org/10.1099/00221287-128-6-1179

    CAS  Article  Google Scholar 

  29. Ghosh PK, Maiti TK (2016) Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume–bacteria symbiosis: a review. Achiev Life Sci 10:136–143. https://doi.org/10.1016/j.als.2016.11.003

    Article  Google Scholar 

  30. Gibson AH, Harper JE (1985) Nitrate effect on nodulation of soybean by Bradyrhizobium japonicum 1. Crop Sci 25:497–501. https://doi.org/10.2135/cropsci1985.0011183x002500030015x

    CAS  Article  Google Scholar 

  31. Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–297. https://doi.org/10.1139/m94-033

    CAS  Article  Google Scholar 

  32. Hall TA (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98

  33. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software packages for education and data analysis. Palaeontol Electron 4:XIX–XX

    Google Scholar 

  34. Herridge DF, Brockwell J (1988) Contributions of fixed nitrogen and soil nitrate to the nitrogen economy of irrigated soybean. Soil Biol Biochem 20:711–717. https://doi.org/10.1016/0038-0717(88)90156-3

    CAS  Article  Google Scholar 

  35. Holt-Giménez E, Altieri MA (2013) Agroecology, food sovereignty, and the new green revolution. Agroecol Sustain Food Syst 37:90–102. https://doi.org/10.1080/10440046.2012.716388

    Article  Google Scholar 

  36. Hynes MF, O’Connell MP (1990) Host plant effect on competition among strains of Rhizobium leguminosarum. Can J Microbiol 36:864–869. https://doi.org/10.1139/m90-150

    Article  Google Scholar 

  37. Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690. https://doi.org/10.1128/aem.65.6.2685-2690.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Johnston AWB, Downie JA, Rossen L, Shearman CA, Firmin JL, Borthakur D, Wood EA, Bradley D, Brewin NJ, Vincent JM, Haselkorn R, Jones DG, Minchin FR, Dobereiner J, Sprent JI (1987) Molecular analysis of the Rhizobium genes involved in the induction of nitrogen-fixing nodules on legumes. Philos Trans R Soc Lond Ser B Biol Sci 317:193–207

    CAS  Google Scholar 

  39. Jorrin B, Palacios JM, Peix Á, Imperial J (2020) Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst Appl Microbiol 43:126090. https://doi.org/10.1016/j.syapm.2020.126090

    CAS  Article  PubMed  Google Scholar 

  40. Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact 6:775–784. https://doi.org/10.1094/MPMI.2001.14.6.775

    Article  Google Scholar 

  41. Kumar PP, Antony LVM, Kumar M (2009) Phylogenetic diversity of cultivable bacteria associated with filamentous non-hetrocystous marine cyanobacteria. Biology

  42. Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Jannah Shamsani N, Young JPW, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133. https://doi.org/10.1098/rsob.140133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993. https://doi.org/10.1099/00221287-147-4-981

    CAS  Article  PubMed  Google Scholar 

  45. Lane DJ (1991) 16S/23S rRNA Sequencing. Nucleic acid Tech Bact Syst 160:781–791. https://doi.org/10.1007/s00227-012-2133-0

    CAS  Article  Google Scholar 

  46. Lapinskas EB (2007) The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils. Eurasian Soil Sci 40:419–425. https://doi.org/10.1134/S1064229307040084

    Article  Google Scholar 

  47. Lodwig EM, Poole PS (2003) Metabolism of Rhizobium bacteroids. CRC Crit Rev Plant Sci 22:37–78

  48. Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822. https://doi.org/10.1128/aem.58.6.1816-1822.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. McDonald GK (2003) Competitiveness against grass weeds in field pea genotypes. Weed Res 43:48–58. https://doi.org/10.1046/j.1365-3180.2003.00316.x

    Article  Google Scholar 

  50. McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW (2007) Trehalose biosynthesis in Rhizobium leguminosarum by. trifolii and its role in desiccation tolerance. Appl Environ Microbiol 73:3984–3992. https://doi.org/10.1128/AEM.00412-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González RH, Kirchhelle C, Jorrin B, Poole PS (2020) Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proc Natl Acad Sci 117:9822–9831. https://doi.org/10.1073/pnas.1921225117

    CAS  Article  PubMed  Google Scholar 

  52. Mutch LA, Young JPW (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444. https://doi.org/10.1111/j.1365-294X.2004.02259.x

    CAS  Article  PubMed  Google Scholar 

  53. Oresnik IJ, Pacarynuk LA, O’Brien SAP, Yost CK, Hynes MF (1998) Plasmid-encoded catabolic genes in rhizobium leguminosarum bv. Trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant-Microbe Interact 12:1175–1185. https://doi.org/10.1094/MPMI.1998.11.12.1175

    Article  Google Scholar 

  54. Pastor-Bueis R, Sánchez-Cañizares C, James EK, González-Andrés F (2019) Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Front Microbiol 10:2724. https://doi.org/10.3389/fmicb.2019.02724

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. CRC Crit Rev Plant Sci 34:17–42. https://doi.org/10.1080/07352689.2014.897899

    Article  Google Scholar 

  56. Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 4:925–029. https://doi.org/10.2134/agronj2002.9250

    Article  Google Scholar 

  57. Pini F, East AK, Appia-Ayme C, Tomek J, Karunakaran R, Mendoza-Suarez M, Edwards A, Terpolilli JJ, Roworth J, Downie JA, Poole PS (2017) Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol 174:1289–1306. https://doi.org/10.1104/pp.16.01302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Poole P, Allaway D (2020) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43:117–63. doi: 10.1016/s0065-2911(00)43004-3. PMID: 10907556

  59. Poole PS, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303. https://doi.org/10.1038/nrmicro.2017.171

    CAS  Article  PubMed  Google Scholar 

  60. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  61. Rahi P, Giram P, Chaudhari D, DiCenzo GC, Kiran S, Khullar A, Chandel M, Gawari S, Mohan A, Chavan S, Mahajan B (2020) Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Syst Appl Microbiol 43:126127. https://doi.org/10.1016/j.syapm.2020.126127

    CAS  Article  PubMed  Google Scholar 

  62. Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106. https://doi.org/10.1186/gb-2011-12-10-r106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Rogel MA, Ormeño-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104. https://doi.org/10.1016/j.syapm.2010.11.015

    Article  PubMed  Google Scholar 

  64. Ronson CW, Primrose SB (1979) Carbohydrate metabolism in Rhizobium trifolii: identification and symbiotic properties of mutants. J Gen Microbiol 112:77–88. https://doi.org/10.1099/00221287-112-1-77

    CAS  Article  Google Scholar 

  65. Ruisi P, Giambalvo D, Di Miceli G, Frenda AS, Saia S, Amato G (2012) Tillage effects on yield and nitrogen fixation of legumes in mediterranean conditions. Agron J 104:1459–1466. https://doi.org/10.2134/agronj2012.0070

    Article  Google Scholar 

  66. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378. https://doi.org/10.2144/03342mt01

    CAS  Article  PubMed  Google Scholar 

  67. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  68. Saxena AK, Rathi SK, Tilak KVBR (1996) Selection and evaluation of nitrate-tolerant strains of Rhizobium leguminosarum biovar viceae specific to the lentil. Biol Fertil Soils 22:126–130. https://doi.org/10.1007/BF00384443

    Article  Google Scholar 

  69. Seibutis V, Deveikyté I (2006) Pea yield and its components in different crop rotations. Zemdirbyste-Agriculture 93:263–270

    Google Scholar 

  70. Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge

    Google Scholar 

  71. Sneath PHA, Sokal RR (1962) Numerical taxonomy. Nature. 193:855–860. https://doi.org/10.1038/193855a0

    CAS  Article  PubMed  Google Scholar 

  72. Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239. https://doi.org/10.1093/molbev/msz312

    CAS  Article  PubMed  Google Scholar 

  73. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805. https://doi.org/10.1146/annurev-arplant-050312-120235

    CAS  Article  PubMed  Google Scholar 

  75. van Egeraat AWSM (1975) The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil 42:381–386. https://doi.org/10.1007/BF00010013

    Article  Google Scholar 

  76. Vanderlinde EM, Hynes MF, Yost CK (2014) Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol 16:205–217. https://doi.org/10.1111/1462-2920.12196

    CAS  Article  PubMed  Google Scholar 

  77. Vincent JM (1970) A manual for the practical study of root-nodule bacteria, . I.B.P. Handbook. Blackwell Sci Publ, Oxford

    Google Scholar 

  78. Wielbo J, Marek-Kozaczuk M, Kubik-Komar A, Skorupska A (2007) Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Can J Microbiol 53:957–967. https://doi.org/10.1139/W07-053

    CAS  Article  PubMed  Google Scholar 

  79. Wielbo J, Marek-Kozaczuk M, Mazur A, Kubik-Komar A, Skorupska A (2010) Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Appl Environ Microbiol 76:4593–4600. https://doi.org/10.1128/AEM.00667-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Cavassim MIA, Rashid MH-o, Aserse AA, Perry BJ, Wang ET, Velázquez E, Andronov EE, Tampakaki A, Flores Félix JD, Rivas González R, Youseif SH, Lepetit M, Boivin S, Jorrin B, Kenicer GJ, Peix Á, Hynes MF, Ramírez-Bahena MH, Gulati A, Tian C-F (2021) Defining the Rhizobium leguminosarum species complex. Genes 12: 111 https://doi.org/10.3390/genes12010111

  81. Zhang F, Smith DL (2002) Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv Agron 76:125–161. https://doi.org/10.1016/s0065-2113(02)76004-5

    CAS  Article  Google Scholar 

  82. Zhang J, Shang Y, Peng S, Chen W, Wang E, de Lajudie P, Li B, Guo C, Liu C (2019) Rhizobium sophorae, Rhizobium laguerreae, and two novel Rhizobium genospecies associated with Vicia sativa L. in Northwest China. Plant Soil 442:113–126. https://doi.org/10.1007/s11104-019-04168-w

    CAS  Article  Google Scholar 

  83. Zhou XJ, Liang Y, Chen H, Shen SH, Jing YX (2006) Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica 44:530–535. https://doi.org/10.1007/s11099-006-0066-x

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study has received funding from the Research Council of Lithuania (LMTLT) through the high-level R&D project “Enhancement of the multifunctional properties of legumes in feed and food value chains (SmartLegume), grant number––01.2.2-LMT-K-718-01-0068.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Skaidre Suproniene.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

figure6

High resolution Image (PNG 3388 kb)

ESM 1

(TIF 11626 kb)

ESM 2

(DOCX 1014 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suproniene, S., Decorosi, F., Pini, F. et al. Selection of Rhizobium strains for inoculation of Lithuanian Pisum sativum breeding lines. Symbiosis 83, 193–208 (2021). https://doi.org/10.1007/s13199-021-00747-7

Download citation

Keywords

  • Inoculant
  • Rhizobium
  • Pisum sativum
  • Phenotype microarray