Skip to main content

Advertisement

Log in

Exploring economic assessment of the arbuscular mycorrhizal symbiosis

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal (AM) symbiosis has long been projected as one of the sustainable saviors for achieving food security for mankind. However, there exist conflicting views regarding recommending AM fungi as inocula to farmers. Fungal, host, soil and climatic factors affect AM efficacy in the field. The process of identifying, calculating and comparing the costs and benefits of AM symbioses in economic terms is of international interest from both farmer and industry perspectives. It has not yet been possible to economically quantify the benefits of AM fungi in agroecosystems. Some potential benefits such as increased yield, lower fertilizer consumption and better disease tolerance can be measured quantitatively by cost-benefit analyses, but others such as reductions in soil erosion and nutrient leaching, soil carbon sequestration, phytoremediation, renaturation and landscaping are mainly qualitative and cannot be assessed by conventional cost-benefit methodologies. We identify and explore approaches to assessing economic benefits of inoculation with AM fungi and the risks and limitations involved. To ensure that all potential benefits of AM symbioses are given due cognizance, we propose any economic evaluation should also use contingent methods as applied to economic assessment of biodiversity and afforestation. Development of a framework involving systematic measurements of factors involved in establishment and function of AM symbioses should address risks in mismeasurement and resolve issues related to incomplete knowledge and potential conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott LK, Lumley SE (2014) Mycorrhizal Fungi as a potential Indicator of soil health. In: Solaiman MZ, Abbott LK, Varma A (eds) Mycorrhizal Fungi: use in sustainable agriculture and land restoration springer. Heidelberg, Germany, pp 17–31

    Google Scholar 

  • Affokpon A, Coyne DL, Lawouin L, Tossou C, Agbèdè RD, Coosemans J (2011) Effectiveness of native west African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes. Biol Fertil Soils 47:207–217. https://doi.org/10.1007/s00374-010-0525-1

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464. https://doi.org/10.1007/s005720050147

    Article  Google Scholar 

  • Balla I, Szucs E, Borkowska B, Michalczuk B (2008) Evaluation the response of micropropagated peach and apple rootstocks to different mycorrhizal inocula. In: Feldmann F, Kapulnik Y, Baar, J (eds) Mycorrhiza works, Braunschweig: Deutsche Phytomedizinische Gesellschaft, pp126–134

  • Benami M, Isack Y, Grotsky D, Levy D, Kofman Y (2020) The economic potential of Arbuscular Mycorrhizal Fungi in agriculture. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Springer, Cham, pp 239–279

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let us benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham G, Bishop R, Brody M, Bromley D, Clark ET, Cooper W, Costanza R, Hale T, Hayden G, Kellert S, Norgaard R (1995) Issues in ecosystem valuation: improving information for decision making. Ecological Eco 14(2):73–90

    Google Scholar 

  • Bitterlich M, Rouphael Y, Graefe J, Franken P (2018) Arbuscular mycorrhizas: a promising component of plant production systems provided favorable conditions for their growth. Front Plant Sci 9:1329. https://doi.org/10.3389/fpls.2018.01329

    Article  PubMed  PubMed Central  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality, and nutritional value of tomato: a field study. Mycorrhiza 27:1–11

    CAS  PubMed  Google Scholar 

  • Boyle KJ (2017) Contingent valuation in practice. In: Champ PA, Boyle KJ, Brown TC (eds) A primer on nonmarket valuation. Springer, Dordrecht, pp 83–131

    Google Scholar 

  • Brito I, Goss MJ, De Carvalho M (2012) Effect of tillage and crop on arbuscular mycorrhiza colonisation of winter wheat and triticale under Mediterranean conditions. Soil Use Manag 28:202–208

    Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Pl Sci 20(5):283–290

    CAS  Google Scholar 

  • Ceballos I, Ruiz M, Fernandez C, Pena R, Rodriguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8(8):e70633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, Craig A, Duchicela J, Frame A, Gardes M, Gehring C, Ha M (2016) MycoDB, a global database of plant response to mycorrhizal fungi. Scientific data 3:160028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary VB, Sandall EL, Lazarski MV (2019) Urban mycorrhizas: predicting arbuscular mycorrhizal abundance in green roofs. Fungal Ecol 40:12–19

    Google Scholar 

  • Chave M, Angeon V, Paut R, Collombet R, Tchamitchian M (2019) Codesigning biodiversity-based agrosystems promotes alternatives to mycorrhizal inoculants. Agron Sustain Develop 39:48

    Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270. https://doi.org/10.3389/fpls.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, Durrieu G, Cavaloc Y, Amir H (2019) Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29:325–339

    PubMed  Google Scholar 

  • Delavaux CS, Camenzind T, Homeier J, Jiménez-Paz R, Ashton M, Queenborough SA (2017) Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest. Mycorrhiza 27:311–319

    CAS  PubMed  Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Pl Sci 85:15–21

    Google Scholar 

  • Fan J-W, Solaiman ZM, Mickan BS, Du Y-L, Li F-M, Abbott LK (2019) Sequential defoliation impacts on colonization of roots of Lolium rigidum by arbuscular mycorrhizal fungi were primarily determined by root responses. Biol Fertil Soils 5:789–800

    Google Scholar 

  • Fracasso A, Telò L, Lanfranco L, Bonfante P, Amaducci S (2020) Physiological beneficial effect of Rhizophagus intraradices inoculation on tomato plant yield under water deficit conditions. Agronomy 10:71. https://doi.org/10.3390/agronomy10010071

    Article  Google Scholar 

  • Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z (2020) Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 10(1):1–2

    Google Scholar 

  • Gazey C, Abbott LK, Robson AD (2004) Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from South-Western Australia. Mycorrhiza 14:355–362

    CAS  PubMed  Google Scholar 

  • Gianinazzi S, Vosatka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271. https://doi.org/10.1139/B04-072

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy 10(1):106. https://doi.org/10.3390/agronomy10010106

    Article  Google Scholar 

  • Gupta MM (2020) Arbuscular mycorrhizal fungi - the potential soil health indicators. In: Giri B, Verma A (eds) Soil Health, Springer, Cham, pp. 183–195

  • Gupta MM, Aggarwal A, Asha (2018) From mycorrhizosphere to rhizosphere microbiome: the paradigm shift. In: Giri B, Prasad R, Varma A (eds) Root Biology Springer, Cham, pp. 487–500

  • Gupta MM, Chourasiya D, Sharma MP (2019) Diversity of arbuscular mycorrhizal fungi in relation to sustainable plant production systems. In: Satyanarayana T, Johri BN, Das SK (eds) Microbial diversity in ecosystem sustainability and biotechnological applications volume 1. Microbial Diversity in Normal and Extreme Environments, Springer Singapore, pp167–186

  • Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2018) Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol 32(1):126–135

    Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26(3):209–214. https://doi.org/10.1007/s00572-015-0661-4

    Article  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GW (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    PubMed  Google Scholar 

  • Holland T, Vukicevich E, Thomsen C, Pogiatzis A, Hart M, Bowen P (2018) Arbuscular mycorrhizal fungi in viticulture: should we use biofertilizers? Catalyst: Discovery into Practice 15;2(2):59-63

  • Jaffuel G, Imperiali N, Shelby K, Campos-Herrera R, Geisert R, Maurhofer M, Loper J, Keel C, Turlings TC, Hibbard BE (2019) Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Sci Rep 9:1–12

    CAS  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40(2):358–364

    Google Scholar 

  • Kapoor R, Evelin H, Devi TS, Gupta S (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470. https://doi.org/10.3389/fpls.2019.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremed J 11(1):33–43. https://doi.org/10.1080/1088986060118585

    Article  CAS  Google Scholar 

  • Khan AG (1972) The effect of vesicular-arbuscular mycorrhizal associations on growth of cereals. I. Effects on maize growth. New Phytol 71:613–619

    Google Scholar 

  • Kiers ET, West SA, Wyatt GA, Gardner A, Bücking H, Werner GD (2016) Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat Plants 2:160–163

    Google Scholar 

  • Kokkoris VA (2019) Establishment persistence and efficacy of commercial arbuscular mycorrhizal fungi. University of British Columbia, Doctoral dissertation

    Google Scholar 

  • Kokkoris V, Li Y, Hamel C, Hanson K, Hart M (2019) Site specificity in establishment of a commercial fungal inoculant. Sci Total Environ 660:1135–1143

    CAS  PubMed  Google Scholar 

  • Koziol L, Bever JD (2017) The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J Appl Ecol 54(5):1301–1309

    Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Biol Biochem 69:123–131

    CAS  Google Scholar 

  • Lumley S (2013) Sordid boon? The context of sustainability in historical and contemporary global economics. Academica Press, Palo Alto

    Google Scholar 

  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813. https://doi.org/10.1016/j.jhazmat.2019.120813

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Ferti Soils 31(2):150–156. https://doi.org/10.1007/s003740050638

    Article  Google Scholar 

  • Maronek DM, Hendrix JW, Kiernan J (1981) Mycorrhizal fungi and their importance in horticultural crop production. Hort Rev 3:172–213

    Google Scholar 

  • Menge JA (1982) Effect of soil fumigants and fungicides on vesicular-arbuscular fungi. Phytopathol 72:1125–1132

    Google Scholar 

  • Menge JA (1985) Developing widescale VA mycorrhizal inoculations: is it practical or necessary? In: Molina R (ed) Proceedings of the 6th north American conference on Mycorrhizae. Oregon State University, Corvallis, Ore, Forest Research Laboratory, pp 80–82

    Google Scholar 

  • Moradi M, Naji HR, Imani F, Behbahani SM, Ahmadi MT (2017) Arbuscular mycorrhizal fungi changes by afforestation in sand dunes. J Arid Environments 140:14–19. https://doi.org/10.1016/j.jaridenv.2017.01.006

    Article  Google Scholar 

  • Morris EK, Morris DJ, Vogt S, Gleber SC, Bigalke M, Wilcke W, Rillig MC (2019) Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. The ISME J 13(7):1639–1646

    CAS  PubMed  Google Scholar 

  • Njeru EM, Muthini M, Muindi MM, Ombori O, Nchore SB, Runo S, Maingi JM (2020) Exploiting arbuscular mycorrhizal fungi-rhizobia-legume symbiosis to increase smallholder sarmers crop production and resilience under a changing climate. In: Singh BR, Safalaoh A, Nyambilila A. Amuri LO, Eik BK, Sitaula, RL (eds) Climate impacts on agricultural and natural resource sustainability in Africa, Springer, Cham, pp. 471–488

  • Nugent RA (2001) Using economic analysis to measure the sustainability of urban and peri-urban agriculture: a comparison of cost-benefit and contingent valuation analyses. Presentation at workshop on appropriate methodologies in urban agriculture. Nairobi, Kenya

    Google Scholar 

  • Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D (2017) Monk J (2017) fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213(2):481–486

    PubMed  Google Scholar 

  • Ortaş İ (2020) Mycorrhizas in fruit nutrition: important breakthroughs. In: Hu C (ed) Srivastva AK. Elsevier, Fruit Crops, pp 339–351

    Google Scholar 

  • Pal S, Singh HB, Farooqui A, Rakshit A (2016) Commercialization of Arbuscular Mycorrhizal Technology in Agriculture and Forestry. In: Singh H, Sarma B, Keswani . (eds) Agriculturally important microorganisms. Springer, Singapore pp 97–105

  • Pandit R, Parrotta JA, Chaudhary AK, Karlen DL, Vieira DL, Anker Y, Chen R, Morris J, Harris J, Ntshotsho P (2020) A framework to evaluate land degradation and restoration responses for improved planning and decision-making. Ecosystems People 16(1):1–18. https://doi.org/10.1080/26395916.2019.1697756

    Article  Google Scholar 

  • Paul C, Hanley N, Meyer ST, Fürst C, Weisser WW, Knoke T (2020) On the functional relationship between biodiversity and economic value. Science Adv 6(5): eaax7712. https://doi.org/10.1126/sciadv.aax7712

  • Pellegrino E, Piazza G, Arduini I, Ercoli L (2020) Field inoculation of bread wheat with Rhizophagus irregularis under organic farming: variability in growth response and nutritional uptake of eleven old genotypes and a modern variety. Agronomy 10(3):333. https://doi.org/10.3390/agronomy10030333

    Article  CAS  Google Scholar 

  • Pimental D, Wilson C, McCallum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. Biol Fertili Soils 21:303–308

    Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220(4):1059–1075

    PubMed  Google Scholar 

  • Puri A, Adholeya A (2013) A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi. Symbiosis 59(2):87–97. https://doi.org/10.1007/s13199-012-0213-z

    Article  CAS  Google Scholar 

  • Qin F, Yu S (2019) Arbuscular mycorrhizal fungi protect native woody species from novel weapons. Plant Soil 440:39–52

    CAS  Google Scholar 

  • Querejeta JI (2017) Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. In: Collins-Johnson N, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil fertility, sructure, and carbon storage. Elsevier, Amsterdam, pp 299–317. https://doi.org/10.1016/B978-0-12-804312-7.00017-6

    Chapter  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J of Soil Sci 84(4):355–363

    Google Scholar 

  • Rillig MC, Sosa-Hernández MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016 Oct 27) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625

    PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C (2018) Soil biodiversity effects from field to fork. Trends Plant Sci 23(1):17–24

    CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, Hohmann P, Lammel DR, Roy J, van der Heijden MG, Yang G (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 18:1–5

    Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Anderson IC, Antonovics J, Ballhausen MB, Bergmann J, Bielcik M, Chaudhary VB, Deveautour C, Grünfeld L, Hempel S (2020) Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. New Phytol (online ahead of printing) 227:1610–1614. https://doi.org/10.1111/nph.16527

    Article  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale SD, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10.1016/j.scienta.2015

    Article  Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    PubMed  Google Scholar 

  • Ryan MH, Graham JH, Morton JB, Kirkegaard JA (2019) Research must use a systems agronomy approach if management of the arbuscular mycorrhizal symbiosis is to contribute to sustainable intensification. New Phytol 222(3):1176–1178

    PubMed  Google Scholar 

  • Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG, Cardarelli M, Rouphael Y (2020) Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 30(1):133–147

    CAS  PubMed  Google Scholar 

  • Schubert A, Lubraco G (2000) Mycorrhizal inoculation enhances growth and nutrient uptake of micropropagated apple rootstocks during weaning in commercial substrates of high nutrient availability. Appl Soil Ecol 15:113–118. https://doi.org/10.1016/S0929-1393(00)00086-X

    Article  Google Scholar 

  • Schüßler A, Krüger C, Urgiles N (2016) Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 26(3):199–207

    PubMed  Google Scholar 

  • Schweiger PF, Robson AD, Barrow NJ, Abbott LK (2007) Arbuscular mycorrhizal fungi from three general induce two-phase plant growth responses on a high P-fixing soil. Plant Soil 292:181–192

    CAS  Google Scholar 

  • Sharma MP, Adholeya A (2004) Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on the post vitro growth and yield of micropropagated strawberry grown in a sandy loam soil. Can J Bot 82:322–328

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. https://doi.org/10.3852/16-042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam L (2004) The contingent valuation method: a review. Environ Impact Assess Rev 24(1):89–124

    Google Scholar 

  • Vosátka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technol in agriculture from genes to bioproducts. Basel, Switzerland, Birkhäuser Verlag, pp 235–247

    Google Scholar 

  • Vosatka M, Albrechtova J, Patten R (2008) The international market development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza. Springer, Berlin

    Google Scholar 

  • Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Google Scholar 

  • Wang ZG, Bi YL, Jiang B, Zhakypbek Y, Peng SP, Liu WW, Liu H (2016) Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, Northwest China. Sci Rep 6:34336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watts-Williams S, Cavagnaro TR (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294

    CAS  Google Scholar 

  • White JA, Tallaksen J, Charvat I (2008) The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site. Mycologia 100(1):6–11

    PubMed  Google Scholar 

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222(1):543–555

    CAS  PubMed  Google Scholar 

  • Zhang S, Guo X, Yun W, Xia Y, You Z, Rillig MC (2020) Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields. Plant Soil 6:1–4

    CAS  Google Scholar 

  • Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, Pausch J (2020) Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol Biochem 140:10–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.M., Abbott, L.K. Exploring economic assessment of the arbuscular mycorrhizal symbiosis. Symbiosis 83, 143–152 (2021). https://doi.org/10.1007/s13199-020-00738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-020-00738-0

Keywords

Navigation