Skip to main content
Log in

Lessons from culturing lichen soredia

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Vegetative propagules play various important roles in lichen biology. We cultured soredia of Cladonia lichens in vitro and obtained three noteworthy results. Firstly, soredia are a beneficial source for the isolation of lichen symbionts. The mycobiont was obtained from 66% and the photobiont from 67% of the cultured soredia that were not contaminated. Secondly, the development of soredia followed a previously recognized pattern, arachnoid stage – soredium field – primordium, but a thalline structure was not achieved. We suggest that thallus formation in vitro is a question of favourable environmental factors, not partners compatibility. Finally, we discovered that fungi, other than the mycobiont, as well as airborne contaminants are dispersed together with lichen soredia. This is the first-ever report of such a phenomenon. The possible ecological consequences are discussed. Cystobasidiomycete yeasts were found among these fungi. We isolated representatives of three different lineages from a single thallus suggesting a low specificity for this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadjian V (1966) Artificial reestablishment of the lichen Cladonia cristatella. Science 151:199–201

    CAS  PubMed  Google Scholar 

  • Ahmadjian V (1993a) The lichen photobiont: What Can It Tell Us about Lichen Systematics? Bryologist 96:310–313

    Google Scholar 

  • Ahmadjian V (1993b) The Lichen Symbiosis. Wiley, New York

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Google Scholar 

  • Ahmadjian V, Russel LA, Hildreth KC (1980) Artificial re-establishment of lichens. I. Morphological interactions between the phycobiont of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89

    Google Scholar 

  • Armaleo D, May S (2009) Sizing the fungal and algal genomes of the lichen Cladonia grayi through quantitative PCR. Symbiosis 49:43–51

    Google Scholar 

  • Armstrong RA (1987) Dispersal in a population of the lichen Hypogymnia physodes. Environ Exp Bot 27:357–363

    Google Scholar 

  • Armstrong RA (1990) Dispersal, establishment and survival of soredia and thallus fragments of the lichen, Hypogymnia physodes (L.) Nyl. New Phytol 114:239–245

    Google Scholar 

  • Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752

    CAS  PubMed  Google Scholar 

  • Athukorala SNP, Huebner E, Piercey-Normore MD (2014) Identification and comparison of the 3 early stages of resynthesis for the lichen Cladonia rangiferina. Can J Microbiol 60:41–52

    CAS  PubMed  Google Scholar 

  • Belinchón R, Yahr R, Ellis CJ (2015) Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 37:762–768

    Google Scholar 

  • Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails PlosOne 6:e18770

    CAS  Google Scholar 

  • Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 40–68

    Google Scholar 

  • Buldakov MS (2010) Intraspecific variation in the viability of soredia in Hypogymnia physodes (L.) Nyl. (Ascomycota: Lecanorales). Russ J Ecol 41:211–217

    Google Scholar 

  • Cardós JLH, Prieto M, Jylhä M, Aragón G, Molina MC, Martínez I, Rikkinen J (2019) A case study on the re-establishment of the cyanolichen symbiosis: where do the compatible photobionts come from? Ann Bot 124:379–388

    PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • Černajová I, Škaloud P (2019) The first survey of cystobasidiomycete yeasts in the lichen genus Cladonia; with the description of Lichenozyma pisutiana gen. nov., sp. nov. Fungal Biol 123:625–637

    PubMed  Google Scholar 

  • Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82

    PubMed  PubMed Central  Google Scholar 

  • Chagnon P-L, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold AE (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180:181–191

    PubMed  Google Scholar 

  • Crittenden PD, Hawksworth DJC, Campbell FS (1995) Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytol 130:267–297

    Google Scholar 

  • Crous PW, Groenewald JZ (2016) They seldom occur alone Fungal Biol 120:1392–1415

    PubMed  Google Scholar 

  • Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Schubert K, Braun U, de Hoog GS, Hocking AD, Shin HD, Groenewald JZ (2007) Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol 58:185–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI et al (2016) Fungal Planet description sheets: 469–557. Persoonia 37:218–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium stored, lichenized, and other fungi. Plant Syst Evol 216:243–249

    CAS  Google Scholar 

  • Darbishire OV (1927) The soredia of Peltigera erumpens Wain. and P. scutata Kbr. Trans Br Mycol Soc 12:52–70

    Google Scholar 

  • Darriba T, Taboada GL, Doallo R, Posada D (2012) jModelTest2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu J-K, Bhat DJ, Taylor JE, Bahkali AH, McKenzie EHC, Hyde KD (2017) Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers 82:107–182

    Google Scholar 

  • Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 24:93–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya N, Takashima M, Shiotani H (2012) Reclassification of citrus pseudo greasy spot causal yeasts, and a proposal of two new species, Sporobolomyces productus sp. nov. and S. corallinus sp. nov. Mycoscience 53:261–269

    Google Scholar 

  • Galun M (1988) Lichenization. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 153–169

    Google Scholar 

  • Galun M, Garty J (1988) Soredia formation of compatible and incompatible lichen symbionts. In: Scannerini S, Smith D, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plant, animal and microbial symbiosis, vol 17. NATO ASI Series (Series H: Cell Biology). Springer, Berlin, pp 207–218

    Google Scholar 

  • Gardes M, Bruns T (1993) ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner IA, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424

    CAS  PubMed  Google Scholar 

  • Guzow-Krzemińska B, Stocker-Wörgötter E (2013) In vitro culturing and resynthesis of the mycobiont Protoparmeliopsis muralis with algal bionts. Lichenologist 45:65–76

    Google Scholar 

  • Harmata K, Olech M (1991) Transect for aerobiological studies from Antarctica to Poland. Grana 30:458–463

    Google Scholar 

  • Hauck M, Zöller T (2003) Copper sensitivity of soredia of the epiphytic lichen Hypogymnia physodes. Lichenologist 35:271–274

    Google Scholar 

  • Hawksworth DL, Grube M (2020) Lichens redefined as complex ecosystems. New Phytol 227:1281–1283

    PubMed  PubMed Central  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    PubMed  PubMed Central  Google Scholar 

  • Honegger R (2012) The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In: Hock B (ed) The mycota. IX. Fungal Associations, 2nd edn. Springer, Berlin, pp 287–340

    Google Scholar 

  • Hosoya T, Sasagawa R, Hosaka K, Gi-Ho S, Hirayama Y, Yamaguchi K, Toyama K, Kakishima M (2010) Molecular phylogenetic studies of Lachnum and its allies based on the Japanese material. Mycoscience 51:170–181

    CAS  Google Scholar 

  • Jahns HM (1993) Culture experiments with lichens. Plant Syst Evol 187:145–174

    Google Scholar 

  • Joneson S, Lutzoni F (2009) Compatibility and thigmotropism in the lichen symbiosis: a reappraisal. Symbiosis 47:109–115

    Google Scholar 

  • Katoh K, Rozewicki J, Yamad KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinf 18:1–7

    Google Scholar 

  • Kon Y, Ohmura Y (2010) Regeneration of juvenile thalli from transplanted soredia of Parmotrema clavuliferum and Ramalina yasudae. Bull Natl Mus Nat Sci Ser B 36:65–70

    Google Scholar 

  • Lallemant R (1972) Etude de la formation des sorédies chez le Discolichen Buellia canescens (Dicks.) D. Notrs Bull Soc Bot France 119:463–475

    Google Scholar 

  • Lendemer JC, Keepers KG, Tripp EA, Pogoda CS, McCain CM, Kane NC (2019) A taxonomically broad metagenomic survey of 339 species spanning 57 families suggests cystobasidiomycete yeasts are not ubiquitous across all lichens. Am J Bot 106:1090–1095

    CAS  PubMed  Google Scholar 

  • Lorentsson S, Mattsson J-E (1999) New reports of soredia dispersed by ants, Formica cunicularia. Lichenologist 31:204–207

    Google Scholar 

  • Marčiulynas A, Marčiulyniené D, Lynikienė J, Gedminas A, Vaičiukynė M, Menkis A (2020) Fungi and oomycetes in the irrigation water of forest nurseries. Forests 11:459

    Google Scholar 

  • Mark K, Laanisto L, Bueno CG, Niinemets U, Keller C, Scheidegger C (2020) Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. https://doi.org/10.1111/nph.16475

    Article  PubMed  Google Scholar 

  • Marthinsen G, Rui S, Timdal E (2019) OLICH: a reference library of DNA barcodes for Nordic lichens. Biodivers Data J 7:1–146

    Google Scholar 

  • Meeβen J, Eppenstein S, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis 59:131–143

    Google Scholar 

  • Meeβen J, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 59:121–130

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop 14:1–8

    Google Scholar 

  • Oberwinkler F (2017) Yeasts in Pucciniomycotina Mycol Prog 16:831–856

    Google Scholar 

  • Ott S (1987) Differences in the developmental rates of lichens. Ann Bot Fenn 24:385–393

    Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174

    PubMed  Google Scholar 

  • Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Google Scholar 

  • Petrzik K, Vondrák J, Barták M, Peksa O, Kubešová O (2014) Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol 138:549–559

    CAS  Google Scholar 

  • Réblová M, Hubka V, Thureborn O, Lundberg J, Sallstedt T, Wedin M, Ivarsson M (2016) From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the Chaetothyriales. PLoS ONE 11:e0163396

    PubMed  PubMed Central  Google Scholar 

  • Richardson DHS, Hill DJ, Smith DC (1968) Lichen physiology. XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67:469–486

    CAS  Google Scholar 

  • Richardson DHS, Dowding P, Ni Lamhna E (1985) Monitoring air quality with leaf yeasts. J Biol Educ 19:299–303

    Google Scholar 

  • Richardson DHS, Dowding P (1988) The processes involved in the leaching of leaves under non-polluted conditions and the influence of leachates on leaf-surface micro-organisms. In: Cape N, Mathy P (eds) Scientific basis of forest decline symptomology, vol 15. Air pollution Research Report. pp 133–148 (Commission of European Communities)

    Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    CAS  PubMed  Google Scholar 

  • Rolshausen G, Dal Grande F, Sadowska-Deś AD, Otte J, Schmitt I (2018) Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualist-mediated niche expansions. Ecography 41:1380–1392

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  • Rosales-Castillo JA, Oyama K, Vázquez-Garcidueñas MS, Aguilar-Romero R, García-Oliva F, Vázquez-Marrufo G (2018) Fungal community and ligninolytic enzyme activities in Quercus deserticola Trel. litter from forest fragments with increasing levels of disturbance. Forests 9:1

    Google Scholar 

  • Scheidegger C (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered populaton. Lichenologist 27:361–374

    Google Scholar 

  • Schuster G (1985) Die Jugendentwicklung von Flechten. Ein Indikator fur Klimabedingungen und Umweltbelastung. Bibl lichenol 20:1–206

    Google Scholar 

  • Schuster G, Ott S, Jahns HM (1985) Artificial cultures of lichens in the natural environment. Lichenologist 17:247–253

    Google Scholar 

  • Selosse M-A, Schneider-Maunoury L, Martos F (2018) Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol 217:968–972

    PubMed  Google Scholar 

  • Sette LD, Passarini MRZ, Rodrigues A, Leal RR, Simioni KCM, Nobre FS, Brito BR, Rocha AJ, Pagnocca FC (2010) Fungal diversity associated with Brazilian energy transmission towers. Fungal Divers 44:53–63

    Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinová J, Škaloud P, Yahr R, Bestová H, Muggia L (2019) Reproductive and dispersal strategies shape the diversity of mycobiontphotobiont association in Cladonia lichens. Mol Phylogenet Evol 134:226–237

    PubMed  Google Scholar 

  • Stocker-Wörgötter E (1991) Thallus formation of two cyanobacterial lichens: Peltigera didactyla and Peltigera praetextata, under laboratory conditions. Bull Soc Bot France 138 Lettres Botaniques 3:179–187

    Google Scholar 

  • Stocker-Wörgötter E (1995) Experimental cultivation of lichens and lichen symbionts. Cann J Bot 73:S579–S589

    Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104(576):581

    Google Scholar 

  • Stocker-Wörgötter E, Hager A (2008) Appendix: culture methods for lichens and lichen symbionts. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 353–363

    Google Scholar 

  • Stocker-Wörgötter E, Türk R (1988) Culture of the cyanobacterial lichen Peltigera didactyla from soredia under laboratory conditions. Lichenologist 20:369–375

    Google Scholar 

  • Stocker-Wörgötter E, Türk R (1989) Artificial cultures of the cyanobacterial lichen Peltigera didactyla (Peltigeraceae) in the natural environment. Plant Syst Evol 165:39–48

    Google Scholar 

  • Stubbs CS (1995) Dispersal of soredia by the oribatid mite, Humerobater arborea. Mycologia 87:454–458

    Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002) Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res 106:768–776

    CAS  Google Scholar 

  • Tuovinen V, Ekman S, Goran T, Vanderpool D, Spribille T, Johannesson H (2019) Two Basidiomycete fungi in the cortex of wolf lichens. Curr Biol 29:1–8

    Google Scholar 

  • U’Ren JM, Arnold AE (2016) Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ 4:e2768

  • U’Ren JM, Lutzoni F, Miadlikowska J, Arnold AE (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353

  • van Nieuwenhuijzen EJ, Houbraken JAMP, Punt PJ, Roeselers G, Adan OCG, Samson RA (2017) The fungal composition of natural biofinishes on oil-treated wood. Fungal Biol Biotechnol 4:2

    PubMed  PubMed Central  Google Scholar 

  • Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P (2018) The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol Ecol 27:3016–3033

    PubMed  Google Scholar 

  • Vančurová L, Kalníková V, Peksa O, Škvorová Z, Malíček J, Moya P, Chytrý K, Černajová I, Škaloud P (2020) Symbiosis between river and dry lands: phycobiont dynamics on river gravel bars. Algal Res 51:102062

    Google Scholar 

  • Valarmathi R, Hariharan GN (2007) Soredial culture of Dirinaria applanata (Fee) Awasthi: observations on developmental stages and compound production. Symbiosis 43:137–142

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilhelmsson O, Sigurbjörnsdóttir A, Grube M, Höfte M (2016) Are lichens potential natural reservoirs for plant pathogens? Mol Plant Pathol 17:143–145

    PubMed  PubMed Central  Google Scholar 

  • Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJM, Crous PW, Boekhout T, Robert V (2016) DNA barcoding analysis of more than 9000 yeast isolates contribute to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:95–105

    Google Scholar 

  • Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu X-Z, Boekhout T, Bai F-Y (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    PubMed  Google Scholar 

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046

    PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • White JF Jr, Morgan-Jones G, Morrow AC (1993) Taxonomy, life cycle, reproduction and detection of Acremonium endophytes. Agricult Ecosyst Environ 44:13–37

    Google Scholar 

  • Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antonie Van Leeuwenhoek 107:173–185

    CAS  PubMed  Google Scholar 

  • Zorer R, Türk R, Stocker-Wörgötter E (1997) Resynthesis of the lichen Cladonia fimbriata from the axenic cultures of the isolated symbionts. In: Kappen L (ed) New species and novel aspects in ecology and physiology of lichens. Bibl Lichenol 67: 85–89

Download references

Acknowledgements

This study was funded by the Primus Research Programme of Charles University SCI/13. IČ was supported by the STARS programme of the Faculty of Science, Charles University, Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Černajová.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Černajová, I., Škaloud, P. Lessons from culturing lichen soredia. Symbiosis 82, 109–122 (2020). https://doi.org/10.1007/s13199-020-00718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-020-00718-4

Navigation