Endophytic bacteria naturally inhabiting commercial maize seeds occupy different niches and are efficient plant growth-promoting agents

Abstract

The isolation of seed-endophytic bacteria (SEB) is a promising approach for the selection of maize plant growth-promoting bacteria (PGPB). With the hypothesis that maize seeds harbor SEB that occupy different niches and show plant-growth-promoting abilities, we aimed to isolate and characterize the potential PGPB from these seeds. The bacteria from commercial seeds (BRS Gorutuba) and axenically grown maize-seedlings were isolated, molecularly fingerprinted, and genetically characterized by amplified ribosomal DNA restriction analysis (ARDRA). All SEB were evaluated for their promotion of early root growth. The selected strains were identified by 16S rRNA sequencing and evaluated for their plant growth-promotion traits. A pot experiment was conducted to assess the ability of the SEB to promote maize-growth and nutrient accumulation. Fifty-one bacterial strains were retrieved, mostly isolated directly from the seeds. All the isolated bacteria represented different strains according to their molecular fingerprinting. ARDRA clustering revealed six clusters influenced by their plant tissue/organ of origin. Twenty-nine SEB were selected based on their influence on early root growth. The 16S rRNA sequences classified the SEB as Bacillus (22), Paenibacillus (2) and Acinetobacter (5). The inoculation of Bacillus ESA 674 improved the shoot dry mass in 57% and the Acinetobacter ESA 662 improved the root growth by 235%, both compared to the uninoculated control. At least 12 bacteria improved nutrient content in the shoots. The Bacillus spp. ESA 674 and ESA 652 outstood in improving maize nutrition by increasing the accumulation of several nutrients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886. https://doi.org/10.1139/W08-081

    Article  PubMed  CAS  Google Scholar 

  2. Aeron A, Khare E, Kumar C et al (2020) Revisiting the plant growth - promoting rhizobacteria : lessons from the past and objectives for the future. Arch Microbiol 202:665–676. https://doi.org/10.1007/s00203-019-01779-w

    Article  PubMed  CAS  Google Scholar 

  3. Alves GC, Videira SS, Urquiaga S, Reis VM (2014) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387:307–321. https://doi.org/10.1007/s11104-014-2295-2

    Article  CAS  Google Scholar 

  4. Ambrosini A, Stefanski T, Lisboa BB, Beneduzi A, Vargas LK, Passaglia LMP (2016) Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser. Ann Appl Biol 168:93–110. https://doi.org/10.1111/aab.12245

    Article  CAS  Google Scholar 

  5. Antunes G dos R, Santana SRA, Escobar IEC, et al (2019) Associative diazotrophic bacteria from forage grasses in the Brazilian semiarid region are effective plant growth promoters. Crop Pasture Sci 70:899–907. doi: https://doi.org/10.1071/CP19076

  6. Araújo ÉDO, Martins MR, Vitorino ACT et al (2015) Effect of nitrogen fertilization associated with diazotrophic bacteria inoculation on nitrogen use efficiency and its biological fixation by corn determined using 15 N. African J Microbiol Res 9:643–650. https://doi.org/10.5897/AJMR2014.7072

    Article  CAS  Google Scholar 

  7. Bacilio-Jiménez M, Aguilar-Flores S, Del Valle MV et al (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172. https://doi.org/10.1016/S0038-0717(00)00126-7

  8. Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy. Springer Science & Business Media

  9. Bhatt K, Maheshwari DK (2020) Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech 10: https://doi.org/10.1007/s13205-019-2033-9

  10. Bodhankar S, Grover M, Hemanth S et al (2017) Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 7:232. https://doi.org/10.1007/s13205-017-0860-0

  11. Bodhankar S, Grover M, Reddy G (2019) In Planta screening of maize seed endophytic bacteria for potential applications under dryland conditions. Indian J Dryl Agric Res Dev 34:53. https://doi.org/10.5958/2231-6701.2019.00009.5

  12. Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    Article  CAS  Google Scholar 

  13. Calvo P, Watts DB, Kloepper JW, Torbert HA (2017) Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Z Pflanzenernähr Bodenkd 180:56–70. https://doi.org/10.1002/jpln.201500616

    Article  CAS  Google Scholar 

  14. Cavalcanti MIP, Nascimento R de C, Rodrigues DR, et al (2020) Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach. Rhizosphere 15:100211.  https://doi: 10.1016/j.rhisph.2020.100211

  15. Chowdhury S, Lata R, Kharwar RN, Gond SK (2019) Microbial Endophytes of Maize Seeds and Their Application in Crop Improvements BT - Seed Endophytes: Biology and Biotechnology. In: Verma SK, White Jr JF (eds). Springer International Publishing, Cham, pp 449–463. https://doi.org/10.1007/978-3-030-10504-4_21

  16. CONAB (2019) Séries históricas. https://www.conab.gov.br/conteudos.php?a=1252&t=&Pagina_objcmsconteudos=3#A_objcmsconteudos. Accessed 10 Feb 2020

  17. da Silva JF, da Silva TR, Escobar IEC, Fraiz ACR, dos Santos JWM, do Nascimento TR, dos Santos JMR, Peters SJW, de Melo RF, Signor D, Fernandes-Júnior PI (2018) Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands. World J Microbiol Biotechnol 34:186. https://doi.org/10.1007/s11274-018-2568-7

    Article  PubMed  CAS  Google Scholar 

  18. de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35 (6):1039-1042

  20. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol 72:313–327

    CAS  Google Scholar 

  21. dos Santos CLR, Alves GC, de Matos Macedo AV, Giori FG, Pereira W, Urquiaga S, Reis VM (2017) Contribution of a mixed inoculant containing strains of Burkholderia spp. and Herbaspirillum ssp. to the growth of three sorghum genotypes under increased nitrogen fertilization levels. Appl Soil Ecol 113:96–106. https://doi.org/10.1016/J.APSOIL.2017.02.008

  22. Gadanho M, Sampaio JP (2002) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res 2:47–58. https://doi.org/10.1016/S1567-1356(01)00062-9

  23. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205. https://doi.org/10.3934/bioeng.2015.3.183

    Article  CAS  Google Scholar 

  24. Haichar FEZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230. https://doi.org/10.1038/ismej.2008.80

    Article  PubMed  CAS  Google Scholar 

  25. Hardoim P. (2019) The Ecology of Seed Microbiota. In: Verma S., White Jr JF. (eds) Seed Endophytes: Biology and Biotechnology. Springer International Publishing, Cham, pp 103–125. https://doi.org/10.1007/978-3-030-10504-4_6

  26. Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0

    Article  CAS  Google Scholar 

  28. Hungria M, Nogueira MA, Araujo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric Ecosyst Environ 221:125–131. https://doi.org/10.1016/j.agee.2016.01.024

    Article  CAS  Google Scholar 

  29. Ikeda AC, Savi DC, Hungria M, Kava V (2020) Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Sci - Agron 42:e44364. https://doi.org/10.4025/actasciagron.v42i1.44364

    Article  Google Scholar 

  30. Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355. https://doi.org/10.1007/s11104-016-2826-0

    Article  CAS  Google Scholar 

  31. Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162. https://doi.org/10.1264/jsme2.ME09113

    Article  PubMed  Google Scholar 

  32. Kavamura VN, Robinson RJ, Hayat R, Clark IM, Hughes D, Rossmann M, Hirsch PR, Mendes R, Mauchline TH (2019) Land management and microbial seed load effect on rhizosphere and endosphere bacterial community assembly in wheat. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.02625

    Article  Google Scholar 

  33. Khande R, Sharma SK, Ramesh A, Sharma MP (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138. https://doi.org/10.1016/j.rhisph.2017.09.002

    Article  Google Scholar 

  34. Liao CFH (1981) Devarda’s alloy method for total nitrogen determination. Soil Sci Soc Am J 45:852–855. https://doi.org/10.2136/sssaj1981.03615995004500050005x

    Article  CAS  Google Scholar 

  35. Liu Y, Zuo S, Xu L, Zou Y, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012. https://doi.org/10.1007/s00203-012-0836-8

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Zuo S, Zou Y, Wang J, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79. https://doi.org/10.1007/s13213-012-0446-3

    Article  Google Scholar 

  37. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753. https://doi.org/10.1007/s00253-011-3483-0

    Article  PubMed  CAS  Google Scholar 

  38. Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100. https://doi.org/10.1264/jsme2.21.86

  39. Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121. http://dx.doi.org/10.1016/j.envexpbot.2013.11.005

  40. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00011

  41. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12:1–21. https://doi.org/10.1371/journal.pone.0187913

    Article  CAS  Google Scholar 

  42. Nostro A, Procopio F, Pizzimenti FC et al (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523. https://doi.org/10.1099/jmm.0.46804-0

    Article  PubMed  CAS  Google Scholar 

  43. Pathan SI, Ceccherini MT, Sunseri F, Lupini A (2020) Rhizosphere as hotspot for plant-soil-microbe interaction BT - carbon and nitrogen cycling in soil. In: Meena RS, Pathan SI, Ceccherini MT (eds) Datta R. Springer Singapore, Singapore, pp 17–43

    Google Scholar 

  44. Pramanik P, Goswami AJ, Ghosh S, Kalita C (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-East India. J Appl Microbiol 126:215–222. https://doi.org/10.1111/jam.14130

    Article  PubMed  CAS  Google Scholar 

  45. Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408. https://doi.org/10.1016/j.envexpbot.2009.04.007

    Article  CAS  Google Scholar 

  46. Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol Res 167:69–78. https://doi.org/10.1016/j.micres.2011.03.003

    Article  PubMed  CAS  Google Scholar 

  47. Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808. https://doi.org/10.1139/W07-048

    Article  PubMed  CAS  Google Scholar 

  48. Ringelberg D, Foley K, Reynolds CM (2012) Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Can J Microbiol 58:67–80. https://doi.org/10.1139/W11-122

    Article  PubMed  CAS  Google Scholar 

  49. Rodrigues Neto J, Malavolta VA Jr, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12:32

    Google Scholar 

  50. Rolfe SA, Griffiths J, Ton J (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 49:73–82

    Article  CAS  Google Scholar 

  51. Santana SRA, Voltolini TV, Antunes G dos R, et al. (2020) Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum. Arch Microbiol 202:1015–1024. https://doi.org/10.1007/s00203-020-01810-5

  52. Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants : reviewing the past , discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9:205. https://doi.org/10.1186/s13568-019-0932-0

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x

    Article  CAS  Google Scholar 

  54. Schlemper TR, Dimitrov MR, Silva Gutierrez FAO, van Veen JA, Silveira APD, Kuramae EE (2018) Effect of Burkholderia tropica and Herbaspirillum frisingense strains on sorghum growth is plant genotype dependent. PeerJ 6:e5346. https://doi.org/10.7717/peerj.5346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  PubMed  CAS  Google Scholar 

  56. Seido SL, Sousa LP, Silva MJ, Donzeli VP, Queiroz SOP (2019) Melon growth-promoting rhizobacteria under saline stress. Rev Bras Ciências Agrárias 14:1–9. https://doi.org/10.5039/agraria.v14i1a5623

    Article  Google Scholar 

  57. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192. https://doi.org/10.1099/ijs.0.63149-0

    Article  PubMed  CAS  Google Scholar 

  58. Soares RA, Roesch LFW, Zanatta G, de Oliveira Camargo FA, Passaglia LMP (2006) Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Appl Soil Ecol 33:221–234. https://doi.org/10.1016/j.apsoil.2006.01.001

    Article  Google Scholar 

  59. Švec P, Vancanneyt M, Seman M et al (2005) Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiol Lett 247:59–63. https://doi.org/10.1016/j.femsle.2005.04.030

    Article  PubMed  CAS  Google Scholar 

  60. Sylvester-Bradley R, Asakawa N, La Torraca S et al (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22

    Article  Google Scholar 

  61. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (eds) (2017) Manual de métodos de análise de solo, 3rd edn. Brasilia, Empresa Brasileira de Pesquisa Agropecuária

    Google Scholar 

  62. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50. https://doi.org/10.1111/1758-2229.12181

    Article  Google Scholar 

  63. Verma SK, White Jr JF (2019) Seed Endophytes. Springer International Publishing

  64. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerpriting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  65. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. [published for the] international biological Programme [by] Blackwell scientific

  66. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Our acknowledgments are given to Brazilian Agricultural Research Corporation (Embrapa 23.13.08.003.00.00) and Brazilian Council for Scientific and Technological Development (CNPq 485168/2013–8), INCT–Plant Growth-Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq/Fundação Araucária STI/CAPES INCT-MPCPAgro 465133/2014-4) for financial support. We also thank the Science foundation of the Pernambuco State (FACEPE) and CNPq for awarding scholarships to the first and sixth authors, respectively. The last two authors are research fellows of CNPq (306812/2018-5 and 311218/2017-2, respectively).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Ivan Fernandes-Júnior.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bomfim, C.S.G., da Silva, V.B., Cursino, L.H.S. et al. Endophytic bacteria naturally inhabiting commercial maize seeds occupy different niches and are efficient plant growth-promoting agents. Symbiosis 81, 255–269 (2020). https://doi.org/10.1007/s13199-020-00701-z

Download citation

Keywords

  • Acinetobacter
  • Bacillus
  • Paenibacillus
  • Plant growth-promoting bacteria
  • Seed bacterial endophytes
  • Seed-borne bacteria