Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius

Abstract

Chemical crosstalk between plant roots and associated microbes is imperative for the initiation of symbiosis. Phenolics, flavonoids and indole-3-acetic acid (IAA) are acclaimed as signaling molecules in developing plant-microbe symbiosis. The role of IAA and flavonoids in establishing a symbiotic relationship between Aspergillus nomius wlg2 and maize roots have also been observed during the present study. The isolate A. nomius wlg2 and maize roots have secreted flavonoids and IAA that helped in A. nomius-maize association. However, the suppression of either flavonoids or IAA secretion reduced the endophyte colonization of the maize roots by 77% and 67%, respectively. The main flavonoids secreted by maize were identified as luteolin, calycosin, phenolics cis-caftaric acid, and caffeoyl-d-glucose. The identified flavonoids were most likely to be involved in the root-endophyte association. To establish a plant-microbe interaction, the complex chemical dialogue is necessary for which IAA and flavonoids play a central role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdel-lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Ahmad R, Muniandy S, Shukri NIA, Alias SMU, Hamid AA, Yusoff WMW, Senafi S, Daud F (2014) Antioxidant properties and glucan compositions of various crude extract from Lentinus squarrosulus mycelial culture. Adv Biosci Biotechnol 5:805–814

    CAS  Google Scholar 

  3. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 1-11

  5. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    CAS  Google Scholar 

  6. Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, Dubois J, Ballou D, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288:1448–1457

    PubMed  CAS  Google Scholar 

  7. Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    CAS  Google Scholar 

  8. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    CAS  Google Scholar 

  9. Ferro AP, Marchiosi R, De Cássia Siqueira-Soares R, Bonini EA, Ferrarese M, Ferrarese-Filho O (2015) Effects of cinnamic and ferulic acids on growth and lignification of maize roots. J Allel Int 1:29–38

    Google Scholar 

  10. Fu S-F, WEI J-Y, Chen H-W, Liu Y-Y, Lu H-Y, Chou J-Y (2015) Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10:e1048052

    PubMed  PubMed Central  Google Scholar 

  11. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    CAS  Google Scholar 

  12. Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee I-J (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207

    PubMed  CAS  Google Scholar 

  13. Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    PubMed  PubMed Central  Google Scholar 

  14. Han B, Li X, Dong X, Zhou N, Jiang B (2013) Effects of AM Fungi infection on the secondary metabolites and root of Astragalus englerianus. Acta Agric Boreali-Occidentalis Sin 12:026

    Google Scholar 

  15. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  16. Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    PubMed  CAS  Google Scholar 

  17. Huang W-Y, CAI Y-Z, Hyde KD, Corke H, Sun M (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23:1253–1263

    CAS  Google Scholar 

  18. Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Google Scholar 

  19. Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015a) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:1–9

    CAS  Google Scholar 

  20. Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015b) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46

    PubMed  PubMed Central  Google Scholar 

  21. Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M (2018) IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 13:e0208150

    PubMed  PubMed Central  Google Scholar 

  22. Ismail I, Hamayun M, Hussain A, Iqbal A, Khan SA, Lee I-J (2018) Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. Biomed Res Int 2018:1–11

    CAS  Google Scholar 

  23. Jan FG, Hamayun M, Hussain A, JAN G, Iqbal A, Khan A, Lee I-J (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:3

    PubMed  PubMed Central  Google Scholar 

  24. Jia Y-J, Ito H, Matsui H, Honma M (2000) 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci Biotechnol Biochem 64:299–305

    PubMed  CAS  Google Scholar 

  25. Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, KOKUDO Y, Ishii T (2015) Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J 84:827–837

    PubMed  CAS  Google Scholar 

  26. Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, Kim J-M, Lee I-J, Choo Y-S, Yoon U-H (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231

    PubMed  PubMed Central  Google Scholar 

  27. Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Khan AA, Sajid M, Iqbal A, Khan ZH, Islam B, Ali F, Ali K, Ahmed A, Sajjad M, Arif M (2017) Improving yield and mineral profile of tomato through changing crop micro-environment. Fresenius Environ Bull 26:4911–4918

    Google Scholar 

  29. Klamer M, Bååth E (2004) Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18: 2ω6, 9. Soil Biol Biochem 36:57–65

    CAS  Google Scholar 

  30. Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f sp niveum. PLoS One 8:e63383

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu C-W, Murray JD (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33

    PubMed Central  CAS  Google Scholar 

  32. Liu C-Y, Zhang F, Zhang D-J, Srivastava A, Wu Q-S, Zou Y-N (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep 8:1978

    PubMed  PubMed Central  Google Scholar 

  33. Ludwig-Muller J (2015) Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J. Plant Physiol 172:4–12

    Google Scholar 

  34. Lupini A, Sorgonà A, Princi MP, Sunseri F, Abenavoli MR (2016) Morphological andphysiologicaleffectsoftrans-cinnamicacidanditshydroxylatedderivativeson maizeroottypes. Plant Growth Regul 78:263–273

    CAS  Google Scholar 

  35. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2018a) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 1-11

  37. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Rahman H, Tawab A, Ahmad A, Ayaz S (2018b) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68

    PubMed  Google Scholar 

  38. Qiu M, Xie R-S, Shi Y, Zhang H, Chen H-M (2010) Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann Microbiol 60:143–150

    CAS  Google Scholar 

  39. Salvador VH, Lima RB, Dos Santos WD, Soares AR, Böhm PAF, Marchiosi R, Ferrarese MDLL, Ferrarese-Filho O (2013) Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS One 8:e69105

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4:1312–1316

    Google Scholar 

  41. Steinmann D, Ganzera M (2011) Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed Anal 55:744–757

    PubMed  CAS  Google Scholar 

  42. Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y (2015) Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep 34(8):1343–1352

    PubMed  CAS  Google Scholar 

  43. Tanaka E, Tanaka C, Ishihara A, Kuwahara Y, TSUDA M (2003) Indole-3-acetic acid biosynthesis in Aciculosporium take, a causal agent of witches' broom of bamboo. J Gen Plant Pathol 69:1–6

    CAS  Google Scholar 

  44. Wang Q, LIU J, ZHU H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    PubMed  PubMed Central  Google Scholar 

  45. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhou X, Wu F (2012) P-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS One 7:e48288

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhou J, Lyu Y, Richlen ML, Anderson DM, Cai Z (2016) Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. Crit Rev Plant Sci 35(2):81–105

    PubMed  Google Scholar 

  48. Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390:129–142

    CAS  Google Scholar 

Download references

Funding

We are thankful to the Higher Education Commission (HEC-Pakistan) and Abdul Wali Khan University Mardan for providing the funds for the study.

Author information

Affiliations

Authors

Contributions

AM, MI, NK performed the experiments. AM, MI, AT performed the LC-MS/MS analysis and interpretation of the LC-MS/MS data. AH, MH, AI analyzed and wrote the manuscript. AH, MH, AI edited the manuscript and arranged work resources. AH supervised the whole project.

Corresponding authors

Correspondence to Asif Mehmood or Anwar Hussain.

Ethics declarations

Competing interests

The authors state that there is no competitive concern of any nature with this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehmood, A., Hussain, A., Irshad, M. et al. Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius. Symbiosis 81, 149–160 (2020). https://doi.org/10.1007/s13199-020-00690-z

Download citation

Keywords

  • IAA
  • Flavonoids
  • Phenolics
  • Endophyte
  • Maize