Community structure and function of cultivable Endophytic Bacteria isolated from four Moss species in Qilian Mountain

Abstract

Mosses inhabiting alpine regions play a vital role in maintaining the stability of their environments. Despite their possible importance, the cultivatable endophytes of mosses in alpine regions have not been widely examined. The community structure of cultivatable endophytes from four species of mosses, Thuidium cymbifolium, Cirriphyllum cirrosum, Tortella tortuosa and Tortula reflexa, was assessed using 16S rRNA sequencing. The plant growth-promoting traits of all isolates were evaluated by measuring nitrogen fixation, phosphate solubilization, plant hormone (indoleacetic acid) production, and antifungal activity. Overall, 36 endophyte strains of bacteria were isolated from the 4 species of mosses from the Qilian Mountains in the Qinghai-Tibet Plateau, and were found to belong to 4 phyla, 11 genera, and 20 species. The dominant phyla were Proteobacteria (63.9%). Of the isolates, 53% belonged to Pseudomonas. The cultured bacteria from the mosses differed in their growth-promoting traits. This is the first report on the diversity of culturable endophytic bacteria in mosses from high-altitude cold regions. These plant growth-promoting bacteria might have applications in agriculture or be of value in strategies for environmental protection in alpine regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abadias M, Altisent R, Usall J, Torres R, Oliveira M, Vinas I (2014) Biopreservation of fresh-cut melon using the strain Pseudomonas graminis CPA-7. Postharvest Biol Technol 96:69–77

    Article  CAS  Google Scholar 

  2. Alegre I, Vinas I, Usall J, Anguera M, Altisent R, Abadias M (2013) Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiol 33:139–148

    PubMed  Article  Google Scholar 

  3. Bach HJ, Jessen I, Schloter M, Munch JC (2003) A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies. J Microbiol Methods 52:85–91

    PubMed  Article  CAS  Google Scholar 

  4. Bastian F, Cohen A, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  5. Bernard, G. and William, B. (2004) "Systematics of the Bryophyta (mosses): from molecules to a revised classification". Monographs in Systematic Botany Molecular Systematics of Bryophytes Missouri Botanical Garden Press 98, 205–239

  6. Boddey RM, Knowles R (1987) Methods for quantification of nitrogen fixation associated with gramineae. Crit Rev Plant Sci 6:209–266

    Article  CAS  Google Scholar 

  7. Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V (2012a) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. International Society for Microbial Ecology 6:802–813

    CAS  Google Scholar 

  8. Bragina A, Maier S, Berg C, Mueller H, Chobot V, Hadacek F, Berg G (2012b) Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol 2:275

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Bragina A, Cardinale M, Berg C, Berg G (2013) Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 4:394

    PubMed  PubMed Central  Article  Google Scholar 

  10. Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, BERG G (2014) The Sphagnum microbiome supports greatly ecosystem functioning under extreme conditions. Mol Ecol 23:4498–44510

    PubMed  Article  CAS  Google Scholar 

  11. Bragina A, Müller CA, Berg G (2015a) The moss microbiome: new insights into the microbial world of plants and its biotechnological potential. Rostocker meeresbiologische Beiträge 26:25–33

    Google Scholar 

  12. Bragina A, Berg C, Berg G (2015b) The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 24:4794–4807

    Article  Google Scholar 

  13. Burris RH (1972) Nitrogen fixation assay methods and techniques. Methods Enzymol 24:415–431

    PubMed  Article  CAS  Google Scholar 

  14. Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Kim H, Yun HD (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol 73:618–630

    PubMed  Article  CAS  Google Scholar 

  15. Chung EJ, Park HH, Park TS, Ahn GW, Chung YR (2010) Production of a phytotoxic compound, 3-Phenylpropionic acid by a bacterial Endophyte, Arthrobacter humicola YC6002 isolated from the root of Zoysia japonica. The Plant Pathology Journal 26:245–252

    Article  CAS  Google Scholar 

  16. Conard HS, Redfearn PL, Bamrick J (1980) How to know the mosses and liverworts, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Cowan ST, Steel KJ (1974) Cowan and Steel’s manual for the identification of medical Bacteria, 2nd edn. Cambridge, Cambridge University Press

    Google Scholar 

  18. Dedysh, S.N., Liesack,W., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov,N.S. and Tiedje, J.M. (2000) Methylocella palustris gen. Nov., sp. nov., a new methaneoxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50, 955–-969

  19. Dedysh, S.N., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Liesack,W. and Tiedje, J.M. (2002) Methylocapsa acidophila gen. Nov., sp. nov., a novel methane-oxidizing and dinitrogen fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52, 251–-261

  20. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best A, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Article  Google Scholar 

  21. Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829

    PubMed  Article  CAS  Google Scholar 

  22. Hardoim PR, Van Overbeek LS, Berg G, Pirttil AM, Compant S, Campisano A, Dring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Article  Google Scholar 

  23. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNAgene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Kip N, Fritz C, Langelaan ES, Pan Y (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9:47–55

    Article  CAS  Google Scholar 

  25. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Jonathan Shaw A, Turetsky M (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64

    PubMed  Article  CAS  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  27. Kukla M, Płociniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117:40–46

  28. Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151

    Article  Google Scholar 

  29. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  30. Lebeis SL (2014) The potential for give and take in plant-microbiome relationships. Front Plant Sci 5:287

    PubMed  PubMed Central  Article  Google Scholar 

  31. Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Liu Y, Gu JG, Zhang XX, Li CL (2011) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721

    PubMed  Article  CAS  Google Scholar 

  32. Liu XL, Liu SL, Liu M, Kong BH, Liu L, Li YH (2014) A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates. Braz J Microbiol 45:163–173

    PubMed  PubMed Central  Article  Google Scholar 

  33. Lu, F.X., Sun, L.J., Lu, Z.X., Bie, X.M., Fang, Y.W. and Liu,S. (2007) Isolation and identification of an Endophytic strain EJS-3 producing novel Fibrinolytic enzymes. Curr Microbiol 54,435–439

  34. Malcolm B, Malcolm N (2000) Mosses and bryophytes: an illustrated glossary. Timber Press/Micro-Optics Press, Portland, OR

    Google Scholar 

  35. Mathews D (1994) Cascade-Olympic natural history. Audubon Society of Portland/Raven Editions, Portland, Oregon

    Google Scholar 

  36. Mikicinski A, Sobiczewski P, Pulawska J, Malusa E (2016) Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight. Arch Microbiol 198:531–539

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Dennis RK (eds) Methods of soil analysis. Madison, American Society of Agronomy, pp 403–430

    Google Scholar 

  38. Peix A, Rivas R, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C, Velazquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53:2067–2072

    PubMed  Article  CAS  Google Scholar 

  39. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya. 7:362–370

    Google Scholar 

  40. Pojar J, MacKinnon A (2004) Plants of coastal British Columbia including Washington, Oregon & Alaska. Lone Pine, Vancouver, British Columbia

    Google Scholar 

  41. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WC, Wolters-Art M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damste JS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M (2005) Methanotrophic symbionts provide carbon for photo synthesis in peat bogs. Nature. 436:1153–1156

    PubMed  Article  CAS  Google Scholar 

  42. Raweekul W, Wuttitummaporn S, Sodchuen W, Kittiwongwattana C (2016) Plant growth promotion by Endophytic Bacteria Isolated from Rice. Thammasat International Journal of Science and Technology 21:6–17

    Google Scholar 

  43. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    PubMed  Article  CAS  Google Scholar 

  44. Saitou N, Nei M (1987) The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt CS, Lovecka P, Mrnka L, Vychodilova A, Strejcek M, Fenclova M, Demnerova K (2018) Distinct communities of poplar Endophytes on an unpolluted and a risk element-polluted site and their plant growth-promoting potential in vitro. Microb Ecol 75:955–969

    PubMed  Article  CAS  Google Scholar 

  46. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Article  Google Scholar 

  47. Sharon JA, Hathwaik LT, Glenn GM, Imam SH, Lee CC (2016) Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J Soil Sci Plant Nutr 16:525–536

    CAS  Google Scholar 

  48. Shcherbakov AV, Bragina AV, Kuzmina EY, Berg K, Muntyan AN, Malfanova NV, Cardinale M, Berg G, Chebotar VK, Tikhonovich IA (2013) Endophytic Bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology. 82:306–315

    Article  CAS  Google Scholar 

  49. Stępniewska Z, Goraj W, Kuźniar A (2014) Transformation of methane in peatland environments. For Res Pap 75:101–110

    Google Scholar 

  50. Sun HM, Wei YZ, Fang XM, Yu LN, Zhang YQ (2016) Diversity of endophytic bacteria isolated from Huperzia serrate. Acta Microbiol Sin 56:614–628

    Google Scholar 

  51. Sun GZ, Yao T, Feng CJ, Chen L, Li JH, Wang LD (2017) Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biol Control 104:35–43

    Article  CAS  Google Scholar 

  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Wang Y, Yang CD, Yao YL, Wang YQ, Zhang ZF, Xue L (2016) The diversity and potential function of endophytic bacteria isolated from Kobreasia capillifolia at alpine grasslands on the Tibetan plateau. China Journal of Integrative Agriculture 15:2153–2162

    Article  Google Scholar 

  54. Zenova GM, Stepanov AL, Likhacheva AA, Manucharova NA (2002) Praktikum po biologii pochv (practical course in soil biology). Mosk. Gos. Univ, Moscow

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Nature Science Foundation of China Grant No. 31660688 and Special funds for discipline construction of Gansu Agricultural University Grant No. GAU-XKJS-2018-007.

Author information

Affiliations

Authors

Contributions

T.Y., X.J.L., and H.Z. designed the work. X.J.L., W.Q.D., and J.G.Z. performed experiments. D.R.H. analyzed data. X.J.L. wrote the paper with H.Z. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tuo Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1535 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Zhou, H., Yao, T. et al. Community structure and function of cultivable Endophytic Bacteria isolated from four Moss species in Qilian Mountain. Symbiosis 80, 257–267 (2020). https://doi.org/10.1007/s13199-020-00669-w

Download citation

Keywords

  • Community structure
  • Endophytic bacteria
  • Mosses
  • Qilian mountain